1887

Abstract

The means by which airway epithelial cells sense a bacterial infection and which intracellular signalling pathways are activated upon infection are poorly understood. A549 cells and human primary airway cells (NHBE) were used to investigate the response to infection with . Infection of A549 and NHBE with 52K10, a capsule polysaccharide (CPS) mutant, increased the surface levels of ICAM-1 and caused the release of IL-8. By contrast, the wild-type strain did not elicit these responses. Consistent with a functional role for these responses, there was a correlation between ICAM-1 levels and the number of adherent leukocytes on the epithelial cell surface. In addition, treatment of neutrophils with IL-8 enhanced their ability to kill . Strain 52K10 was internalized by A549 cells more efficiently than the wild-type, and when infections with 52K10 were performed in the presence of cytochalasin D the inflammatory response was abrogated. These findings suggest that cellular activation is mediated by bacterial internalization and that CPS prevents the activation through the blockage of bacterial adhesion and uptake. Collectively, the results indicate that bacterial internalization by airway epithelial cells could be the triggering signal for the activation of the innate immune system of the airway. Infection of A549 cells by 52K10 was shown to trigger the nuclear translocation of NF-B. Evidence is presented showing that 52K10 activated IL-8 production through Toll-like receptor (TLR) 2 and TLR4 pathways and that A549 cells could use soluble CD14 as TLR co-receptor.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28285-0
2006-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/2/555.html?itemId=/content/journal/micro/10.1099/mic.0.28285-0&mimeType=html&fmt=ahah

References

  1. Armstrong L, Medford A. R, Uppington K. M, Robertson J, Witherden I. R, Tetley T. D, Millar A. B. 2004; Expression of functional Toll-like receptor (TLR-)2 and TLR-4 on alveolar epithelial cells. Am J Respir Cell Mol Biol 31:241–245 [CrossRef]
    [Google Scholar]
  2. Backhed F, Meijer L, Normark S, Richter-Dahlfors A. 2002; TLR4-dependent recognition of lipopolysaccharide by epithelial cells requires sCD14. Cell Microbiol 4:493–501 [CrossRef]
    [Google Scholar]
  3. Bayram H, Devalia J. L, Sapsford R. J, Ohtoshi T, Miyabara Y, Sagai M, Davies R. J. 1998; The effect of diesel exhaust particles on cell function and release of inflammatory mediators from human bronchial epithelial cells in vitro. Am J Respir Cell Mol Biol 18:441–448 [CrossRef]
    [Google Scholar]
  4. Birchler T, Seibl R, Buchner K, Loeliger S, Seger R, Hossle J. P, Aguzzi A, Lauener R. P. 2001; Human Toll-like receptor 2 mediates induction of the antimicrobial peptide human beta-defensin 2 in response to bacterial lipoprotein. Eur J Immunol 31:3131–3137 [CrossRef]
    [Google Scholar]
  5. Blander J. M, Medzhitov R. 2004; Regulation of phagosome maturation by signals from Toll-like receptors. Science 304:1014–1018 [CrossRef]
    [Google Scholar]
  6. Branger J, Knapp S, Weijer S, Leemans J. C, Pater J. M, Speelman P, Florquin S, van der Poll T. 2004; Role of Toll-like receptor 4 in gram-positive and gram-negative pneumonia in mice. Infect Immun 72:788–794 [CrossRef]
    [Google Scholar]
  7. Bullard D. C, Qin L, Lorenzo I, Quinlin W. M, Doyle N. A, Bosse R, Vestweber D, Doerschuk C. M, Beaudet A. L. 1995; P-selectin/ICAM-1 double mutant mice: acute emigration of neutrophils into the peritoneum is completely absent but is normal into pulmonary alveoli. J Clin Invest 95:1782–1788 [CrossRef]
    [Google Scholar]
  8. Chertov O, Michiel D. F, Xu L, Wang J. M, Tani K, Murphy W. J, Longo D. L, Taub D. D, Oppenheim J. J. 1996; Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J Biol Chem 271:2935–2940 [CrossRef]
    [Google Scholar]
  9. Cortes G, Alvarez D, Saus C, Alberti S. 2002a; Role of lung epithelial cells in defense against Klebsiella pneumoniae pneumonia. Infect Immun 70:1075–1080 [CrossRef]
    [Google Scholar]
  10. Cortes G, Borrell N, de Astorza B, Gomez C, Sauleda J, Alberti S. 2002b; Molecular analysis of the contribution of the capsular polysaccharide and the lipopolysaccharide O side chain to the virulence of Klebsiella pneumoniae in a murine model of pneumonia. Infect Immun 70:2583–2590 [CrossRef]
    [Google Scholar]
  11. Doran K. S, Chang J. C, Benoit V. M, Eckmann L, Nizet V. 2002; Group B streptococcal beta-hemolysin/cytolysin promotes invasion of human lung epithelial cells and the release of interleukin-8. J Infect Dis 185:196–203 [CrossRef]
    [Google Scholar]
  12. Elewaut D, DiDonato J. A, Kim J. M, Truong F, Eckmann L, Kagnoff M. F. 1999; NF- κ B is a central regulator of the intestinal epithelial cell innate immune response induced by infection with enteroinvasive bacteria. J Immunol 163:1457–1466
    [Google Scholar]
  13. Favre-Bonte S, Joly B, Forestier C. 1999; Consequences of reduction of Klebsiella pneumoniae capsule expression on interactions of this bacterium with epithelial cells. Infect Immun 67:554–561
    [Google Scholar]
  14. Frick A. G, Joseph T. D, Pang L, Rabe A. M, Look D. C, St Geme J. W., III. 2000; Haemophilus influenzae stimulates ICAM-1 expression on respiratory epithelial cells. J Immunol 164:4185–4196 [CrossRef]
    [Google Scholar]
  15. Greenberger M. J, Strieter R. M, Kunkel S. L, Danforth J. M, Goodman R. E, Standiford T. J. 1995; Neutralization of IL-10 increases survival in a murine model of Klebsiella pneumonia. J Immunol 155:722–729
    [Google Scholar]
  16. Greenberger M. J, Strieter R. M, Kunkel S. L, Danforth J. M, Laichalk L. L, McGillicuddy D. C, Standiford T. J. 1996; Neutralization of macrophage inflammatory protein-2 attenuates neutrophil recruitment and bacterial clearance in murine Klebsiella pneumonia. J Infect Dis 173:159–165 [CrossRef]
    [Google Scholar]
  17. Haziot A, Rong G. W, Silver J, Goyert S. M. 1993; Recombinant soluble CD14 mediates the activation of endothelial cells by lipopolysaccharide. J Immunol 151:1500–1507
    [Google Scholar]
  18. Haziot A, Ferrero E, Kontgen F, Hijiya N, Yamamoto S, Silver J, Stewart C. L, Goyert S. M. 1996; Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity 4:407–414 [CrossRef]
    [Google Scholar]
  19. Hellermann G. R, Nagy S. B, Kong X, Lockey R. F, Mohapatra S. S. 2002; Mechanism of cigarette smoke condensate-induced acute inflammatory response in human bronchial epithelial cells. Respir Res 3:22 [CrossRef]
    [Google Scholar]
  20. Hoshino Y, Mio T, Nagai S, Miki H, Ito I, Izumi T. 2001; Cytotoxic effects of cigarette smoke extract on an alveolar type II cell-derived cell line. Am J Physiol Lung Cell Mol Physiol 281:L509–L516
    [Google Scholar]
  21. Howard M, O'Garra A, Ishida H, de Waal M. R, de Vries J. 1992; Biological properties of interleukin 10. J Clin Immunol 12:239–247 [CrossRef]
    [Google Scholar]
  22. Janeway C. A., Jr, Medzhitov R. 2002; Innate immune recognition. Annu Rev Immunol 20:197–216 [CrossRef]
    [Google Scholar]
  23. Jersmann H. P, Hii C. S, Hodge G. L, Ferrante A. 2001; Synthesis and surface expression of CD14 by human endothelial cells. Infect Immun 69:479–485 [CrossRef]
    [Google Scholar]
  24. Lee J. H, Del Sorbo L, Uhlig S, Porro G. A, Whitehead T, Voglis S, Liu M, Slutsky A. S, Zhang H. 2004; Intercellular adhesion molecule-1 mediates cellular cross-talk between parenchymal and immune cells after lipopolysaccharide neutralization. J Immunol 172:608–616 [CrossRef]
    [Google Scholar]
  25. Lieber M, Smith B, Szakal A, Nelson-Rees W, Todaro G. 1976; A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int J Cancer 17:62–70 [CrossRef]
    [Google Scholar]
  26. Lien E, Sellati T. J, Yoshimura A. 8 other authors 1999; Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem 274:33419–33425 [CrossRef]
    [Google Scholar]
  27. Look D. C, Rapp S. R, Keller B. T, Holtzman M. J. 1992; Selective induction of intercellular adhesion molecule-1 by interferon-gamma in human airway epithelial cells. Am J Physiol 263:L79–L87
    [Google Scholar]
  28. Loppnow H, Stelter F, Schonbeck U, Schluter C, Ernst M, Schutt C, Flad H. D. 1995; Endotoxin activates human vascular smooth muscle cells despite lack of expression of CD14 mRNA or endogenous membrane CD14. Infect Immun 63:1020–1026
    [Google Scholar]
  29. Martin T. R, Rubenfeld G. D, Ruzinski J. T. 7 other authors 1997; Relationship between soluble CD14, lipopolysaccharide binding protein, and the alveolar inflammatory response in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 155:937–944 [CrossRef]
    [Google Scholar]
  30. Mastronarde J. G, Monick M. M, Mukaida N, Matsushima K, Hunninghake G. W. 1998; Activator protein-1 is the preferred transcription factor for cooperative interaction with nuclear factor- κ B in respiratory syncytial virus-induced interleukin-8 gene expression in airway epithelium. J Infect Dis 177:1275–1281 [CrossRef]
    [Google Scholar]
  31. Mikamo H, Johri A. K, Paoletti L. C, Madoff L. C, Onderdonk A. B. 2004; Adherence to, invasion by, and cytokine production in response to serotype VIII group B streptococci. Infect Immun 72:4716–4722 [CrossRef]
    [Google Scholar]
  32. Mio T, Romberger D. J, Thompson A. B, Robbins R. A, Heires A, Rennard S. I. 1997; Cigarette smoke induces interleukin-8 release from human bronchial epithelial cells. Am J Respir Crit Care Med 155:1770–1776 [CrossRef]
    [Google Scholar]
  33. Monick M. M, Yarovinsky T. O, Powers L. S, Butler N. S, Carter A. B, Gudmundsson G, Hunninghake G. W. 2003; Respiratory syncytial virus up-regulates TLR4 and sensitizes airway epithelial cells to endotoxin. J Biol Chem 278:53035–53044 [CrossRef]
    [Google Scholar]
  34. Moodie F. M, Marwick J. A, Anderson C. S, Szulakowski P, Biswas S. K, Bauter M. R, Kilty I, Rahman I. 2004; Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF- κ B activation and proinflammatory cytokine release in alveolar epithelial cells. FASEB J 18:1897–1899
    [Google Scholar]
  35. Murdoch C, Read R. C, Zhang Q, Finn A. 2002; Choline-binding protein A of Streptococcus pneumoniae elicits chemokine production and expression of intercellular adhesion molecule 1 (CD54) by human alveolar epithelial cells. J Infect Dis 186:1253–1260 [CrossRef]
    [Google Scholar]
  36. Nakajima S, Look D. C, Roswit W. T, Bragdon M. J, Holtzman M. J. 1994; Selective differences in vascular endothelial- vs. airway epithelial-T cell adhesion mechanisms. Am J Physiol 267:L422–L432
    [Google Scholar]
  37. Nakajima S, Roswit W. T, Look D. C, Holtzman M. J. 1995; A hierarchy for integrin expression and adhesiveness among T cell subsets that is linked to TCR gene usage and emphasizes V delta 1+ gamma delta T cell adherence and tissue retention. J Immunol 155:1117–1131
    [Google Scholar]
  38. Nakamura H, Yoshimura K, Jaffe H. A, Crystal R. G. 1991; Interleukin-8 gene expression in human bronchial epithelial cells. J Biol Chem 266:19611–19617
    [Google Scholar]
  39. Nassif X, Fournier J. M, Arondel J, Sansonetti P. J. 1989; Mucoid phenotype of Klebsiella pneumoniae is a plasmid-encoded virulence factor. Infect Immun 57:546–552
    [Google Scholar]
  40. Nishikawa M, Kakemizu N, Ito T, Kudo M, Kaneko T, Suzuki M, Udaka N, Ikeda H, Okubo T. 1999; Superoxide mediates cigarette smoke-induced infiltration of neutrophils into the airways through nuclear factor- κ B activation and IL-8 mRNA expression in guinea pigs in vivo. Am J Respir Cell Mol Biol 20:189–198 [CrossRef]
    [Google Scholar]
  41. O'Brien A. D, Standiford T. J, Bucknell K. A, Wilcoxen S. E, Paine R. III 1999; Role of alveolar epithelial cell intercellular adhesion molecule-1 in host defense against Klebsiella pneumoniae . Am J Physiol 276:L961–L970
    [Google Scholar]
  42. Oelschlaeger T. A, Tall B. D. 1997; Invasion of cultured human epithelial cells by Klebsiella pneumoniae isolated from the urinary tract. Infect Immun 65:2950–2958
    [Google Scholar]
  43. Paine R. III, Morris S. B, Jin H, Baleeiro C. E, Wilcoxen S. E. 2002; ICAM-1 facilitates alveolar macrophage phagocytic activity through effects on migration over the AEC surface. Am J Physiol Lung Cell Mol Physiol 283:L180–L187 [CrossRef]
    [Google Scholar]
  44. Papi A, Papadopoulos N. G, Degitz K, Holgate S. T, Johnston S. L. 2000; Corticosteroids inhibit rhinovirus-induced intercellular adhesion molecule-1 up-regulation and promoter activation on respiratory epithelial cells. J Allergy Clin Immunol 105:318–326 [CrossRef]
    [Google Scholar]
  45. Pathmanathan S, Krishna M. T, Blomberg A, Helleday R, Kelly F. J, Sandstrom T, Holgate S. T, Wilson S. J, Frew A. J. 2003; Repeated daily exposure to 2 ppm nitrogen dioxide upregulates the expression of IL-5, IL-10, IL-13, and ICAM-1 in the bronchial epithelium of healthy human airways. Occup Environ Med 60:892–896 [CrossRef]
    [Google Scholar]
  46. Pechkovsky D. V, Zissel G, Ziegenhagen M. W. 7 other authors 2000; Effect of proinflammatory cytokines on interleukin-8 mRNA expression and protein production by isolated human alveolar epithelial cells type II in primary culture. Eur Cytokine Netw 11:618–625
    [Google Scholar]
  47. Pechkovsky D. V, Zissel G, Goldmann T, Einhaus M, Taube C, Magnussen H, Schlaak M, Muller-Quernheim J. 2002; Pattern of NOS2 and NOS3 mRNA expression in human A549 cells and primary cultured AEC II. Am J Physiol Lung Cell Mol Physiol 282:L684–L692 [CrossRef]
    [Google Scholar]
  48. Pichavant M, Delneste Y, Jeannin P, Fourneau C, Brichet A, Tonnel A. B, Gosset P. 2003; Outer membrane protein A from Klebsiella pneumoniae activates bronchial epithelial cells: implication in neutrophil recruitment. J Immunol 171:6697–6705 [CrossRef]
    [Google Scholar]
  49. Poynter M. E, Irvin C. G, Janssen-Heininger Y. M. 2002; Rapid activation of nuclear factor- κ B in airway epithelium in a murine model of allergic airway inflammation. Am J Pathol 160:1325–1334 [CrossRef]
    [Google Scholar]
  50. Poynter M. E, Irvin C. G, Janssen-Heininger Y. M. 2003; A prominent role for airway epithelial NF- κ B activation in lipopolysaccharide-induced airway inflammation. J Immunol 170:6257–6265 [CrossRef]
    [Google Scholar]
  51. Pugin J, Schurer-Maly C. C, Leturcq D, Moriarty A, Ulevitch R. J, Tobias P. S. 1993; Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci U S A 90:2744–2748 [CrossRef]
    [Google Scholar]
  52. Schilling J. D, Mulvey M. A, Vincent C. D, Lorenz R. G, Hultgren S. J. 2001; Bacterial invasion augments epithelial cytokine responses to Escherichia coli through a lipopolysaccharide-dependent mechanism. J Immunol 166:1148–1155 [CrossRef]
    [Google Scholar]
  53. Schilling J. D, Martin S. M, Hunstad D. A, Patel K. P, Mulvey M. A, Justice S. S, Lorenz R. G, Hultgren S. J. 2003; CD14- and Toll-like receptor-dependent activation of bladder epithelial cells by lipopolysaccharide and type I piliated Escherichia coli . Infect Immun 71:1470–1480 [CrossRef]
    [Google Scholar]
  54. Schreck R, Meier B, Mannel D. N, Droge W, Baeuerle P. A. 1992; Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J Exp Med 175:1181–1194 [CrossRef]
    [Google Scholar]
  55. Schulz C, Farkas L, Wolf K, Kratzel K, Eissner G, Pfeifer M. 2002; Differences in LPS-induced activation of bronchial epithelial cells (BEAS-2B) and type II-like pneumocytes (A-549). Scand J Immunol 56:294–302 [CrossRef]
    [Google Scholar]
  56. Schurr J. R, Young E, Byrne P, Steele C, Shellito J. E, Kolls J. K. 2005; Central role of Toll-like receptor 4 signaling and host defense in experimental pneumonia caused by Gram-negative bacteria. Infect Immun 73:532–545 [CrossRef]
    [Google Scholar]
  57. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M. 1999; MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189:1777–1782 [CrossRef]
    [Google Scholar]
  58. Tosi M. F, Stark J. M, Hamedani A, Smith C. W, Gruenert D. C, Huang Y. T. 1992; Intercellular adhesion molecule-1 (ICAM-1)-dependent and ICAM-1-independent adhesive interactions between polymorphonuclear leukocytes and human airway epithelial cells infected with parainfluenza virus type 2. J Immunol 149:3345–3349
    [Google Scholar]
  59. Tosi M. F, Stark J. M, Smith C. W, Hamedani A, Gruenert D. C, Infeld M. D. 1992; Induction of ICAM-1 expression on human airway epithelial cells by inflammatory cytokines: effects on neutrophil-epithelial cell adhesion. Am J Respir Cell Mol Biol 7:214–221 [CrossRef]
    [Google Scholar]
  60. Tsai W. C, Strieter R. M, Wilkowski J. M, Bucknell K. A, Burdick M. D, Lira S. A, Standiford T. J. 1998; Lung-specific transgenic expression of KC enhances resistance to Klebsiella pneumoniae in mice. J Immunol 161:2435–2440
    [Google Scholar]
  61. Tsutsumi-Ishii Y, Nagaoka I. 2003; Modulation of human beta-defensin-2 transcription in pulmonary epithelial cells by lipopolysaccharide-stimulated mononuclear phagocytes via proinflammatory cytokine production. J Immunol 170:4226–4236 [CrossRef]
    [Google Scholar]
  62. Underhill D. M, Ozinsky A, Hajjar A. M, Stevens A, Wilson C. B, Bassetti M, Aderem A. 1999; The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401:811–815 [CrossRef]
    [Google Scholar]
  63. Van Amersfoort E. S, Van Berkel T. J, Kuiper J. 2003; Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev 16:379–414 [CrossRef]
    [Google Scholar]
  64. Videm V, Strand E. 2004; Changes in neutrophil surface-receptor expression after stimulation with FMLP, endotoxin, interleukin-8 and activated complement compared to degranulation. Scand J Immunol 59:25–33 [CrossRef]
    [Google Scholar]
  65. Witherden I. R, Vanden Bon E. J, Goldstraw P, Ratcliffe C, Pastorino U, Tetley T. D. 2004; Primary human alveolar type II epithelial cell chemokine release: effects of cigarette smoke and neutrophil elastase. Am J Respir Cell Mol Biol 30:500–509 [CrossRef]
    [Google Scholar]
  66. Yamamura M, Hinoda Y, Sasaki S, Tsujisaki M, Oriuchi N, Endo K, Imai K. 1996; A human/mouse chimeric monoclonal antibody against intercellular adhesion molecule-1 for tumor radioimmunoimaging. Jpn J Cancer Res 87:405–411 [CrossRef]
    [Google Scholar]
  67. Yang J, Hooper W. C, Phillips D. J, Talkington D. F. 2002; Regulation of proinflammatory cytokines in human lung epithelial cells infected with Mycoplasma pneumoniae . Infect Immun 70:3649–3655 [CrossRef]
    [Google Scholar]
  68. Yoshida K, Matsumoto T, Tateda K, Uchida K, Tsujimoto S, Yamaguchi K. 2000; Role of bacterial capsule in local and systemic inflammatory responses of mice during pulmonary infection with Klebsiella pneumoniae . J Med Microbiol 49:1003–1010
    [Google Scholar]
  69. Yoshida K, Matsumoto T, Tateda K, Uchida K, Tsujimoto S, Yamaguchi K. 2001; Induction of interleukin-10 and down-regulation of cytokine production by Klebsiella pneumoniae capsule in mice with pulmonary infection. J Med Microbiol 50:456–461
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28285-0
Loading
/content/journal/micro/10.1099/mic.0.28285-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error