1887

Abstract

In enteric bacteria, the contribution of endogenous energy sources to survival both inside and outside the host is poorly understood. The contribution of glycogen production to the virulence, colonization and environmental survival of different serotypes was assessed. Of 19 serotypes (339 strains) tested for glycogen production, 17 (256 strains) were positive. The avian-specific serovars . Gallinarum (62 strains) and . Pullorum (21 strains) did not produce glycogen. The sequence of in three . Gallinarum strains tested revealed an identical deletion of 11 consecutive bases, which was not present in . Pullorum, and a CCC insertion after position 597. Transduction of . Gallinarum and . Pullorum to a glycogen-positive phenotype did not change the ability to colonize the intestine or affect virulence in the chicken. Mortality rates in chickens following oral infection with a . Typhimurium glycogen mutant ( : : km) were not significantly reduced, although colonization of the intestine was reduced over the first 4 weeks of the trial. Growth and yield of the  : : km mutant were comparable to the parent. The mutant survived less well in faeces and in water at 4 °C when the strain was grown in LB broth containing 0·5 % glucose, and in saline it died off more rapidly after 7 days. The data suggest that glycogen has a complex but comparatively minor role in virulence and colonization, but a more significant role in survival.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28292-0
2005-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/12/3969.html?itemId=/content/journal/micro/10.1099/mic.0.28292-0&mimeType=html&fmt=ahah

References

  1. Abdul-Tehrani H., Hudson A. J., Chang Y.-S., Timms A. R., Hawkins C., Williams J. M., Harrison P. M., Guest J. R., Andrews C. 1999; Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur mutants are iron deficient. J Bacteriol 181:1415–1428
    [Google Scholar]
  2. Altier C., Suyemoto M., Lawhon S. D. 2000; Regulation of Salmonella enterica serovar Typhimurium invasion genes by csrA . Infect Immun 68:6790–6797 [CrossRef]
    [Google Scholar]
  3. Baker C. S., Morozov I., Suzuki K., Romeo T., Babitzke P. 2002; CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli . Mol Microbiol 44:1599–1610 [CrossRef]
    [Google Scholar]
  4. Barrow P. A., Simpson J. M., Lovell M. A., Binns M. M. 1987a; Contribution of Salmonella gallinarum large plasmid toward virulence in fowl typhoid. Infect Immun 55:388–392
    [Google Scholar]
  5. Barrow P. A., Huggins M. B., Lovell M. A., Simpson J. M. 1987b; Observations on the pathogenesis of experimental Salmonella typhimurium infection in chickens. Res Vet Sci 42:194–199
    [Google Scholar]
  6. Barrow P. A., Tucker J. F., Simpson J. M. 1987c; Inhibition of colonisation of the chicken alimentary tract with Salmonella typhimurium by Gram-negative facultatively anaerobic bacteria. Epidemiol Infect 98:311–322 [CrossRef]
    [Google Scholar]
  7. Barrow P. A., Simpson J. M., Lovell M. A. 1988; Intestinal colonization in the chicken of food-poisoning Salmonella serotypes; microbial characteristics associated with faecal excretion. Avian Pathol 17:571–588 [CrossRef]
    [Google Scholar]
  8. Bonafonte M. A., Solano C., Sesma B., Alvarez M., Montuenga L., Garcia-Ros D., Gamazo C. 2000; The relationship between glycogen synthesis, biofilm formation and virulence in Salmonella enteritidis . FEMS Microbiol Lett 191:31–36 [CrossRef]
    [Google Scholar]
  9. Boyd E. F., Porwollik S., Blackmer F., McClelland M. 2003; Differences in gene content among Salmonella enterica serovar Typhi isolates. J Clin Microbiol 41:3823–3828 [CrossRef]
    [Google Scholar]
  10. Burleigh I. G., Dawes E. A. 1967; Studies on the endogenous metabolism and senescence of starved Sarcina lutea . J Biochem 102:236–250
    [Google Scholar]
  11. Chang D.-E., Smalley D. J., Tucker D. L. 8 other authors 2004; Carbon nutrition of Escherichia coli in the mouse intestine. Proc Natl Acad Sci U S A 101:7427–7432 [CrossRef]
    [Google Scholar]
  12. Dauvillee D., Kinderf I. S., Li Z., Kosar-Hashemi B., Samuel M. S., Rampling L., Ball S., Morell M. K. 2005; Role of the Escherichia coli glgX gene in glycogen metabolism. J Bacteriol 187:1465–1473 [CrossRef]
    [Google Scholar]
  13. Govons S., Vinopal R., Ingraham J., Preiss J. 1969; Isolation of mutants of Escherichia coli B altered in their ability to synthesize glycogen. J Bacteriol 97:970–972
    [Google Scholar]
  14. Hengge-Aronis R., Fischer D. 1992; Identification and molecular analysis of glgS , a novel growth-phase-regulated and rpoS -dependent gene involved in glycogen synthesis in Escherichia coli . Mol Microbiol 6:1877–1886 [CrossRef]
    [Google Scholar]
  15. Henrissat B., Deleury E., Coutinho P. M. 2002; Glycogen metabolism loss: a common marker of parasitic behaviour in bacteria?. Trends Genet 18:437–440 [CrossRef]
    [Google Scholar]
  16. Jin X., Ballicora M. A., Preiss J., Geiger J. H. 2005; Crystal structure of potato tuber ADP-glucose pyrophosphorylase. EMBO J 24:694–704 [CrossRef]
    [Google Scholar]
  17. Leung P., Preiss J. 1987a; Cloning of the ADPglucose pyrophosphorylase ( glgC ) and glycogen synthase ( glgA ) structural genes from Salmonella typhimurium LT2. J Bacteriol 169:4349–4354
    [Google Scholar]
  18. Leung P., Preiss J. 1987b; Biosynthesis of bacterial glycogen; primary structure of Salmonella typhimurium ADP glucose synthetase as deduced from the nucleotide sequence of the glgC gene. J Bacteriol 169:4355–4360
    [Google Scholar]
  19. Li J., Smith N. H., Nelson K., Cricton P. B., Old D. C., Whittam T. S., Selander R. K. 1993; Evolutionary origin and radiation of the avian-adapted non-motile salmonellae. J Med Microbiol 38:129–139 [CrossRef]
    [Google Scholar]
  20. Lodge J., Fear J., Busby S., Gunasekaran P., Kamini N. R. 1992; Broad-range plasmids carrying the Escherichia coli lactose and galactose operons. FEMS Microbiol Lett 74:271–276
    [Google Scholar]
  21. Makinoshima H., Aizawa S., Hayashi H., Miki T., Nishimura A., Ishihama A. 2003; Growth phase-coupled alterations in cell structure and function of Escherichia coli . J Bacteriol 185:1338–1345 [CrossRef]
    [Google Scholar]
  22. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Milton D. L., O'Toole R., Hörstedt P., Wolf-Watz H. 1996; Flagellin is essential for the virulence of Vibrio anguillarum . J Bacteriol 178:1310–1319
    [Google Scholar]
  24. Neidhardt F. C. editor) 1996; Metabolism and general physiology. In Escherichia coli and Salmonella – Cellular and Molecular Biology . , 2nd edn. pp 187–1072 Washington, DC: American Society for Microbiology;
  25. Parker M. T., Collier L. H. 1990 In Topley and Wilson's Principles of BacteriologyVirology and Immunity: Systematic Bacteriology vol. 2 Edited by Parker M. T., Duerden B. I. London: Edward Arnold;
    [Google Scholar]
  26. Poulson L. K., Licht T. R., Rang C., Krogfelt K. A., Molin S. 1995; Physiological state of Escherichia coli BJ4 growing in the large intestines of streptomycin-treated mice. J Bacteriol 177:5840–5845
    [Google Scholar]
  27. Preiss J. 1984; Bacterial glycogen synthesis and its regulation. Annu Rev Microbiol 38:419–458 [CrossRef]
    [Google Scholar]
  28. Preiss J. 1996; Regulation of glycogen synthesis. In Escherichia coli and Salmonella – Cellular and Molecular Biology . , 2nd edn. pp 1015–1024 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
  29. Preiss J., Romeo T. 1989; Physiology, biochemistry and genetics of bacterial glycogen synthesis. Adv Microb Physiol 30:183–238
    [Google Scholar]
  30. Romeo T. 1998; Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29:1321–1330 [CrossRef]
    [Google Scholar]
  31. Romeo T., Preiss J. 1989; Genetic regulation of glycogen biosynthesis in Escherichia coli : in vitro effects of cyclic AMP and guanosine 5′-diphosphate 3′-diphosphate and analysis of in vivo transcripts. J Bacteriol 171:2773–2782
    [Google Scholar]
  32. Romeo T., Gong M., Liu M. Y., Brun-Zinkernagel A. M. 1993; Identification and molecular characterisation of csrA , a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size and surface properties. J Bacteriol 175:4744–4755
    [Google Scholar]
  33. Sambrook J., Russell D. W. 1989 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilisation system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784–791 [CrossRef]
    [Google Scholar]
  35. Smith H. W. 1955; Observations on experimental fowl typhoid. J Comp Pathol Therapeut 65:37–54 [CrossRef]
    [Google Scholar]
  36. Smith H. W., Tucker J. F. 1975; The effect of antibiotic therapy on the faecal excretion of Salmonella typhimurium by experimentally infected chickens. J Hyg Camb 75:275–292 [CrossRef]
    [Google Scholar]
  37. Steiner K. E., Preiss J. 1977; Biosynthesis of bacterial glycogen: genetic and allosteric regulation of glycogen biosynthesis in Salmonella typhimurium LT-2. J Bacteriol 129:246–263
    [Google Scholar]
  38. Strange R. E. 1968; Bacterial ‘glycogen’ and survival. Nature 220:606–607 [CrossRef]
    [Google Scholar]
  39. Turner A. K., Lovell M. A., Hulme S. D., Zhang-Barber L., Barrow P. A. 1998; Identification of Salmonella typhimurium genes required for colonization of the alimentary tract and for virulence in newly hatched chickens. Infect Immun 66:2099–2106
    [Google Scholar]
  40. Van Houte J., Jansen H. M. 1970; Role of glycogen in survival of Streptococcus mitis . J Bacteriol 101:1083–1085
    [Google Scholar]
  41. Zhang-Barber L., Turner A. K., Martin G., Frankel G., Dougan G., Barrow P. A. 1997; Influence of genes encoding proton-translocating enzymes on suppression of Salmonella typhimurium growth and colonization. J Bacteriol 179:7186–7190
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28292-0
Loading
/content/journal/micro/10.1099/mic.0.28292-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error