1887

Abstract

The Gram-positive soil bacterium and cellulose degrader synthesizes the mycelium-associated enzyme CpeB, which displays haem-dependent catalase and peroxidase activity, as well as haem-independent manganese-peroxidase activity. The expression of the operon depends on the redox regulator FurS and the presence of the haem-binding protein HbpS. Upstream of , the neighbouring and genes were identified. SenS is a sensor histidine kinase with five predicted N-terminally located transmembrane domains. SenR is the corresponding response regulator with a C-terminal DNA-binding motif. Comparative transcriptional and biochemical studies with a designed / chromosomal disruption mutant and a set of constructed transformants showed that the presence of the novel two-component system SenS/SenR negatively modulates the expression of the operon and the gene. The presence of SenS/SenR enhances considerably the resistance of to haemin and the redox-cycling compound plumbagin, suggesting that this system could participate directly or indirectly in the sensing of redox changes. Epitope-tagged HbpS (obtained from an transformant) as well as the native HbpS interact specifically with the purified SenS fusion protein. On the basis of these findings, together with data deduced from the mutant strain, HbpS is suggested to act as an accessory protein that communicates with the sensor protein to modulate the corresponding regulatory cascade. Interestingly, close and distant homologues, respectively, of the SenS/SenR system are encoded within the A3(2) and genomes, but not within other known bacterial genomes. Hence the SenS/SenR system appears to be confined to streptomycetes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28298-0
2005-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/11/3603.html?itemId=/content/journal/micro/10.1099/mic.0.28298-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Baikalov I., Schroder I., Kaczor-Grzeskowiak M., Grzeskowiak K., Gunsalus R. P., Dickerson R. E. 1996; Structure of the Escherichia coli response regulator NarL. Biochemistry 35:11053–11061 [CrossRef]
    [Google Scholar]
  3. Bauer C. E., Elsen S., Bird T. H. 1999; Mechanisms for redox control of gene expression. Annu Rev Microbiol 53:495–523 [CrossRef]
    [Google Scholar]
  4. Beck S., Pohl F. M. 1984; DNA sequencing with direct blotting electrophoresis. EMBO J 3:2905–2909
    [Google Scholar]
  5. Bentley S. D., Chater K. F., Cerdeno-Tarraga A. M. 40 other authors 2002; Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2. Nature 417:141–147 [CrossRef]
    [Google Scholar]
  6. Blake M. S., Johnston K. H., Russel-Jones G. J., Gotschlich E. C. 1984; A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western-blots. Anal Biochem 136:175–179 [CrossRef]
    [Google Scholar]
  7. Blondelet-Rouault M. H., Weiser J., Lebrihi A., Branny P., Pernodet J. L. 1997; Antibiotic resistance gene cassettes derived from the omega interposon for use in E. coli and Streptomyces . Gene 190:315–317 [CrossRef]
    [Google Scholar]
  8. Brian P., Riggle P. J., Santos R. A., Champness W. C. 1996; Global negative regulation of Streptomyces coelicolor antibiotic synthesis mediated by an absA -encoded putative signal transduction system. J Bacteriol 178:3221–3231
    [Google Scholar]
  9. Chang H. M., Chen M. Y., Shieh Y. T., Bibb M. J., Chen C. W. 1996; The CutR/S signal transduction system of Streptomyces lividans represses the biosynthesis of the polyketide antibiotic actinorhodin. Mol Microbiol 21:1075–1085
    [Google Scholar]
  10. Dower W. J., Miller J. F., Ragsdale C. W. 1988; High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145 [CrossRef]
    [Google Scholar]
  11. Fabret C., Feher V. A., Hoch J. A. 1999; Two-component signal transduction in Bacillus subtilis : how one organism sees its world. J Bacteriol 181:1975–1983
    [Google Scholar]
  12. Fischer H. M. 1994; Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352–386
    [Google Scholar]
  13. Garnerone A. M., Cabanes D., Foussard M., Boistard P., Batut J. 1999; Inhibition of the FixL sensor kinase by the FixT protein in Sinorhizobium meliloti . J Biol Chem 274:32500–32506 [CrossRef]
    [Google Scholar]
  14. Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R. D., Bairoch A. 2003; ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788 [CrossRef]
    [Google Scholar]
  15. Gold L., Pribnow D., Schneider T., Shninedling S., Singer B. S., Stormo G. 1981; Translational initiation in prokaryotes. Annu Rev Microbiol 35:365–403 [CrossRef]
    [Google Scholar]
  16. Hall R. A. 2004; Studying protein–protein interactions via blot overlay or Far Western blot. Methods Mol Biol 261:167–174
    [Google Scholar]
  17. Higgins D. G., Bleasby A. J., Fuchs R. 1992; clustal v: improved software for multiple sequence alignment. Comput Appl Biosci 8:189–191
    [Google Scholar]
  18. Hong H. J., Hutchings M. I., Neu J. M., Wright G. D., Paget M. S., Buttner M. J. 2004; Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene ( vanK ) required for drug resistance. Mol Microbiol 52:1107–1121 [CrossRef]
    [Google Scholar]
  19. Hopwood D. A., Bibb M. J., Chater K. F. 7 other authors 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  20. Hutchings M. I., Hoskisson P. A., Chandra G., Buttner M. J. 2004; Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2. Microbiology 150:2795–2806 [CrossRef]
    [Google Scholar]
  21. Ikeda H., Ishikawa J., Hanamoto K. 7 other authors 2003; Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis . Nat Biotechnol 21:526–531 [CrossRef]
    [Google Scholar]
  22. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  23. Loenen W. A., Blattner F. R. 1983; Lambda Charon vectors (Ch32, 33, 34 and 35) adapted for DNA cloning in recombination-deficient hosts. Gene 26:171–179 [CrossRef]
    [Google Scholar]
  24. Magnuson R., Solomon J., Grossman A. D. 1994; Biochemical and genetic characterization of a competence pheromone from B. subtilis . Cell 77:207–216 [CrossRef]
    [Google Scholar]
  25. Marino M., Ramos H. C., Hoffmann T., Glaser P., Jahn D. 2001; Modulation of anaerobic energy metabolism of Bacillus subtilis by arf M ( ywi D. J Bacteriol 183:6815–6821 [CrossRef]
    [Google Scholar]
  26. Mizuno T. 1997; Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli . DNA Res 4:161–168 [CrossRef]
    [Google Scholar]
  27. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6 [CrossRef]
    [Google Scholar]
  28. Ortiz de Orué Lucana D., Schrempf H. 2000; The DNA-binding characteristics of the Streptomyces reticuli regulator FurS depend on the redox state of its cysteine residues. Mol Gen Genet 264:341–353 [CrossRef]
    [Google Scholar]
  29. Ortiz de Orué Lucana D., Tröller M., Schrempf H. 2003; Amino acid residues involved in reversible thiol formation and zinc ion binding in the Streptomyces reticuli redox regulator FurS. Mol Genet Genomics 268:618–627
    [Google Scholar]
  30. Ortiz de Orué Lucana D., Schaa T., Schrempf H. 2004; The novel extracellular Streptomyces reticuli haem-binding protein HbpS influences the production of the catalase-peroxidase CpeB. Microbiology 150:2575–2585 [CrossRef]
    [Google Scholar]
  31. Pao G. M., Saier M. H. Jr 1995; Response regulators of bacterial signal transduction systems: selective domain shuffling during evolution. J Mol Evol 40:136–154 [CrossRef]
    [Google Scholar]
  32. Parkinson J. S. 1993; Signal transduction schemes of bacteria. Cell 73:857–871 [CrossRef]
    [Google Scholar]
  33. Parkinson J. S., Kofoid E. C. 1992; Communication modules in bacterial signalling proteins. Annu Rev Genet 26:71–112 [CrossRef]
    [Google Scholar]
  34. Pestova E. V., Havarstein L. S., Morrison D. A. 1996; Regulation of competence for genetic transformation in Streptomyces pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Mol Microbiol 21:853–862 [CrossRef]
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Schlochtermeier A., Niemeyer F., Schrempf H. 1992; Biochemical and electron microscopic studies of the Streptomyces reticuli cellulase (Avicelase) in its mycelium-associated and extracellular forms. Appl Environ Microbiol 58:3240–3248
    [Google Scholar]
  37. Schmitt M. P. 1999; Identification of a two-component signal transduction system from Corynebacterium diphtheriae that activates gene expression in response to the presence of haem and haemoglobin. J Bacteriol 181:5330–5340
    [Google Scholar]
  38. Sheeler N. L., MacMillan S. V., Nodwell J. R. 2005; Biochemical activities of the absA two component system of Streptomyces coelicolor . J Bacteriol 187:687–696 [CrossRef]
    [Google Scholar]
  39. Sola-Landa A., Moura R. S., Martin J. F. 2003; The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans . Proc Natl Acad Sci U S A 100:6133–6138 [CrossRef]
    [Google Scholar]
  40. Stojiljkovic I., Evavold B. D., Kumar V. 2001; Antimicrobial properties of porphyrins. Expert Opin Investig Drugs 10:309–320 [CrossRef]
    [Google Scholar]
  41. Strohl W. R. 1992; Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20:961–974 [CrossRef]
    [Google Scholar]
  42. Tsujibo H., Hatano N., Okamoto T., Endo H., Miyamoto K., Inamori Y. 1999; Synthesis of chitinase in Streptomyces thermoviolaceus is regulated by a two-component sensor-regulator system. FEMS Microbiol Lett 181:83–90 [CrossRef]
    [Google Scholar]
  43. Vara J., Lewandowska-Skarbek M., Wang Y.-G., Donadio S., Hutchinson C. R. 1989; Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea ( Streptomyces erythreus ). J Bacteriol 171:5872–5881
    [Google Scholar]
  44. Villarejo M. R., Zamenhof P. J., Zabin I. 1972; Beta-galactosidase. In vivo -complementation. J Biol Chem 247:2212–2216
    [Google Scholar]
  45. Zou P., Schrempf H. 2000; The heme-independent manganese-peroxidase activity depends on the presence of the C-terminal domain within the Streptomyces reticuli catalase-peroxidase CpeB. Eur J Biochem 267:2840–2849 [CrossRef]
    [Google Scholar]
  46. Zou P., Borovok I., Ortiz de Orué Lucana D., Müller D., Schrempf H. 1999; The mycelium-associated Streptomyces reticuli catalase-peroxidase, its gene and regulation by FurS. Microbiology 145:549–559 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28298-0
Loading
/content/journal/micro/10.1099/mic.0.28298-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error