1887

Abstract

RsmA is a posttranscriptional regulatory protein in that works in tandem with a small non-coding regulatory RNA molecule, RsmB (RsmZ), to regulate the expression of several virulence-related genes, including the -acyl-homoserine lactone synthase genes and , and the hydrogen cyanide and rhamnolipid biosynthetic operons. Although these targets of direct RsmA regulation have been identified, the full impact of RsmA on cellular activities is not as yet understood. To address this issue the transcriptome profiles of PAO1 and an isogenic mutant were compared. Loss of RsmA altered the expression of genes involved in a variety of pathways and systems important for virulence, including iron acquisition, biosynthesis of the quinolone signal (PQS), the formation of multidrug efflux pumps, and motility. Not all of these effects can be explained through the established regulatory roles of RsmA. This study thus provides both a first step towards the identification of further genes under RsmA posttranscriptional control in and a fuller understanding of the broader impact of RsmA on cellular functions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28324-0
2006-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/2/405.html?itemId=/content/journal/micro/10.1099/mic.0.28324-0&mimeType=html&fmt=ahah

References

  1. Aendekerk S, Diggle S. P, Song Z, Hoiby N, Cornelis P, Williams P, Camara M. 2005; The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. Microbiology 151:1113–1125 [CrossRef]
    [Google Scholar]
  2. Albus A. M, Pesci E. C, Runyen-Janecky L. J, West S. E, Iglewski B. H. 1997; Vfr controls quorum sensing in Pseudomonas aeruginosa . J Bacteriol 179:3928–3935
    [Google Scholar]
  3. Baker C. S, Morozov I, Suzuki K, Romeo T, Babitzke P. 2002; CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli . Mol Microbiol 44:1599–1610 [CrossRef]
    [Google Scholar]
  4. Baysse C, Cullinane M, Burrowes E, Dow J. M, Morrissey J. P, Tam L, Trevors J. T, O'Gara F, Dénervaud V. 2005; Modulation of quorum sensing in Pseudomonas aeruginosa through alteration of membrane properties. Microbiology 151:2529–2542 [CrossRef]
    [Google Scholar]
  5. Beare P. A, For R. J, Martin L. W, Lamont I. L. 2003; Siderophore-mediated cell signalling in Pseudomonas aeruginosa : divergent pathways regulate virulence factor production and siderophore receptor synthesis. Mol Microbiol 47:195–207
    [Google Scholar]
  6. Beatson S. A, Whitchurch C. B, Sargent J. L, Levesque R. C, Mattick J. S. 2002; Differential regulation of twitching motility and elastase production by Vfr in Pseudomonas aeruginosa . J Bacteriol 184:3605–3613 [CrossRef]
    [Google Scholar]
  7. Bertani I, Sevo M, Kojic M, Venturi V. 2003; Role of GacA, LasI, RhlI, Ppk, PsrA, Vfr and ClpXP in the regulation of the stationary-phase sigma factor rpoS /RpoS in Pseudomonas . Arch Microbiol 180:264–271 [CrossRef]
    [Google Scholar]
  8. Blumer C, Heeb S, Pessi G, Haas D. 1999; Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci U S A 96:14073–14078 [CrossRef]
    [Google Scholar]
  9. Burrowes E, Abbas A, O'Neill A, Adams C, O'Gara F. 2005; Characterisation of the regulatory RNA RsmB from Pseudomonas aeruginosa PAO1. Res Microbiol 156:7–16 [CrossRef]
    [Google Scholar]
  10. Collier D. N, Anderson L, McKnight S. L, Noah T. L, Knowles M, Boucher R, Schwab U, Gilligan P, Pesci E. C. 2002; A bacterial cell-to-cell signal in the lungs of cystic fibrosis patients. FEMS Microbiol Lett 215:41–46 [CrossRef]
    [Google Scholar]
  11. Cui Y, Chatterjee A, Liu Y, Dumenyo C. K, Chatterjee A. K. 1995; Identification of a global repressor gene, rsmA , of Erwinia carotovora subsp. carotovora that controls extracellular enzymes, N -(3-oxohexanoyl)-l-homoserine lactone, and pathogenicity in soft-rotting Erwinia spp. J Bacteriol 177:5108–5115
    [Google Scholar]
  12. Dasgupta N, Ramphal R. 2001; Interaction of the antiactivator FleN with the transcriptional activator FleQ regulates flagellar number in Pseudomonas aeruginosa . J Bacteriol 183:6636–6644 [CrossRef]
    [Google Scholar]
  13. Dasgupta N, Ferrell E. P, Kanack K. J, West S. E, Ramphal R. 2002; fleQ , the gene encoding the major flagellar regulator of Pseudomonas aeruginosa , is σ [sup]70[/sup] dependent and is downregulated by Vfr, a homolog of Escherichia coli cyclic AMP receptor protein. J Bacteriol 184:5240–5250 [CrossRef]
    [Google Scholar]
  14. Dasgupta N, Wolfgang M. C, Goodman A. L, Arora S. K, Jyot J, Lory S, Ramphal R. 2003; A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa . Mol Microbiol 50:809–824 [CrossRef]
    [Google Scholar]
  15. Deziel E, Gopalan S, Tampakaki A. P, Lepine F, Padfield K. E, Saucier M, Xiao G, Rahme L. G. 2005; The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI , rhlRI or the production of N -acyl-l-homoserine lactones. Mol Microbiol 55:998–1014
    [Google Scholar]
  16. Diggle S. P, Winzer K, Chhabra S. R, Worrall K. E, Camara M, Williams P. 2003; The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl -dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50:29–43 [CrossRef]
    [Google Scholar]
  17. Essar D. W, Eberly L, Hadero A, Crawford I. P. 1990; Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa : interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 172:884–900
    [Google Scholar]
  18. Fuqua C, Greenberg E. P. 1998; Self-perception in bacteria: quorum sensing with acylated homoserine lactones. Curr Opin Microbiol 1:183–189 [CrossRef]
    [Google Scholar]
  19. Gallagher L. A, McKnight S. L, Kuznetsova M. S, Pesci E. C, Manoil C. 2002; Functions required for extracellular quinolone signalling by Pseudomonas aeruginosa . J Bacteriol 184:6472–6480 [CrossRef]
    [Google Scholar]
  20. Gambello M. J, Kaye S, Iglewski B. H. 1993; LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect Immun 61:1180–1184
    [Google Scholar]
  21. Goodman A. L, Kulasekara B, Rietsch A, Boyd D, Smith R. S, Lory S. 2004; A signalling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa . Dev Cell 7:745–754 [CrossRef]
    [Google Scholar]
  22. Hassett D. J, Howell M. L, Ochsner U. A, Vasil M. L, Johnson Z, Dean G. E. 1997; An operon containing fumC and sodA encoding fumarase C and manganese superoxide dismutase is controlled by the ferric uptake regulator in Pseudomonas aeruginosa : fur mutants produce elevated alginate levels. J Bacteriol 179:1452–1459
    [Google Scholar]
  23. Hassett D. J, Ma J. F, Elkins J. G. 10 other authors 1999; Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34:1082–1093 [CrossRef]
    [Google Scholar]
  24. Heeb S, Valverde C, Gigot-Bonnefoy C, Haas D. 2005; Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 243:251–258 [CrossRef]
    [Google Scholar]
  25. Heinrichs D. E, Poole K. 1996; PchR, a regulator of ferripyochelin receptor gene (fptA) expression in Pseudomonas aeruginosa , functions both as an activator and as a repressor. J Bacteriol 178:2586–2592
    [Google Scholar]
  26. Heurlier K, Williams F, Heeb S, Dormond C, Pessi G, Singer D, Camara M, Williams P, Haas D. 2004; Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol 186:2936–2945 [CrossRef]
    [Google Scholar]
  27. Hunt T. A, Peng W. T, Loubens I, Storey D. G. 2002; The Pseudomonas aeruginosa alternative sigma factor PvdS controls exotoxin A expression and is expressed in lung infections associated with cystic fibrosis. Microbiology 148:3183–3193
    [Google Scholar]
  28. Jacobs M. A, Alwood A, Thaipisuttikul I. 12 other authors 2003; Comprehensive transposon mutant library of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 100:14339–14344 [CrossRef]
    [Google Scholar]
  29. Juhas M, Wiehlmann L, Huber B. 8 other authors 2004; Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa . Microbiology 150:831–841 [CrossRef]
    [Google Scholar]
  30. Juhas M, Eberl L, Tummler B. 2005; Quorum sensing: the power of cooperation in the world of Pseudomonas . Environ Microbiol 7:459–471 [CrossRef]
    [Google Scholar]
  31. Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T. 2003; Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524 [CrossRef]
    [Google Scholar]
  32. Kohler T, Curty L. K, Hamzehpour M. M, Pechere J. C, van Delden C. 2001; Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signalling in Pseudomonas aeruginosa . J Bacteriol 183:5213–5222 [CrossRef]
    [Google Scholar]
  33. Lamont I. L, Beare P. A, Ochsner U, Vasil A. I, Vasil M. L. 2002; Siderophore-mediated signalling regulates virulence factor production in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 99:7072–7077 [CrossRef]
    [Google Scholar]
  34. Laskowski M. A, Osborn E, Kazmierczak B. I. 2004; A novel sensor kinase-response regulator hybrid regulates type III secretion and is required for virulence in Pseudomonas aeruginosa . Mol Microbiol 54:1090–1103 [CrossRef]
    [Google Scholar]
  35. Liu M. Y, Romeo T. 1997; The global regulator CsrA of Escherichia coli is a specific mRNA-binding protein. J Bacteriol 179:4639–4642
    [Google Scholar]
  36. Maseda H, Saito K, Nakajima A, Nakae T. 2000; Variation of the mexT gene, a regulator of the MexEF-oprN efflux pump expression in wild-type strains of Pseudomonas aeruginosa . FEMS Microbiol Lett 192:107–112 [CrossRef]
    [Google Scholar]
  37. Mattick J. S, Whitchurch C. B, Alm R. A. 1996; The molecular genetics of type-4 fimbriae in Pseudomonas aeruginosa – a review. Gene 179:147–155 [CrossRef]
    [Google Scholar]
  38. Mavrodi D. V, Bonsall R. F, Delaney S. M, Soule M. J, Phillips G, Thomashow L. S. 2001; Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465 [CrossRef]
    [Google Scholar]
  39. McGrath S, Wade D. S, Pesci E. C. 2004; Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). FEMS Microbiol Lett 230:27–34 [CrossRef]
    [Google Scholar]
  40. McKnight S. L, Iglewski B. H, Pesci E. C. 2000; The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa . J Bacteriol 182:2702–2708 [CrossRef]
    [Google Scholar]
  41. Pesci E. C, Milbank J. B, Pearson J. P, McKnight S, Kende A. S, Greenberg E. P, Iglewski B. H. 1999; Quinolone signalling in the cell-to-cell communication system of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 96:11229–11234 [CrossRef]
    [Google Scholar]
  42. Pessi G, Haas D. 2001; Dual control of hydrogen cyanide biosynthesis by the global activator GacA in Pseudomonas aeruginosa PAO1. FEMS Microbiol Lett 200:73–78 [CrossRef]
    [Google Scholar]
  43. Pessi G, Williams F, Hindle Z, Heurlier K, Holden M. T, Camara M, Haas D, Williams P. 2001; The global posttranscriptional regulator RsmA modulates production of virulence determinants and N -acylhomoserine lactones in Pseudomonas aeruginosa . J Bacteriol 183:6676–6683 [CrossRef]
    [Google Scholar]
  44. Poole K. 2001; Multidrug resistance in Gram-negative bacteria. Curr Opin Microbiol 4:500–508 [CrossRef]
    [Google Scholar]
  45. Pruitt B. A Jr, McManus A. T, Kim S. H, Goodwin C. W. 1998; Burn wound infections: current status. World J Surg 22:135–145 [CrossRef]
    [Google Scholar]
  46. Rahme L. G, Tan M. W, Le L, Wong S. M, Tompkins R. G, Calderwood S. B, Ausubel F. M. 1997; Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc Natl Acad Sci U S A 94:13245–13250 [CrossRef]
    [Google Scholar]
  47. Reimmann C, Beyeler M, Latifi A, Winteler H, Foglino M, Lazdunski A, Haas D. 1997; The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N -butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 24:309–319 [CrossRef]
    [Google Scholar]
  48. Romeo T. 1998; Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29:1321–1330 [CrossRef]
    [Google Scholar]
  49. Sambrook J, Fritsch E. F, Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  50. Savli H, Karadenizli A, Kolayli F, Gundes S, Ozbek U, Vahaboglu H. 2003; Expression stability of six housekeeping genes: a proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol 52:403–408 [CrossRef]
    [Google Scholar]
  51. Schuster M, Hawkins A. C, Harwood C. S, Greenberg E. P. 2004; The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol 51:973–985 [CrossRef]
    [Google Scholar]
  52. Sobel M. L, Neshat S, Poole K. 2005; Mutations in PA2491 (mexS) promote MexT-dependent mexEF-oprN expression and multidrug resistance in a clinical strain of Pseudomonas aeruginosa . J Bacteriol 187:1246–1253 [CrossRef]
    [Google Scholar]
  53. Spaink H. P, Okker R. J. H, Wijffelman C. A, Pees E, Lugtenberg B. J. J. 1987 Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1J1 Plant Mol Biol;27–39
    [Google Scholar]
  54. Stintzi A, Evans K, Meyer J. M, Poole K. 1998; Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa : lasR/lasI mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiol Lett 166:341–345 [CrossRef]
    [Google Scholar]
  55. Toutain C. M, Zegans M. E, O'Toole G. A. 2005; Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa . J Bacteriol 187:771–777 [CrossRef]
    [Google Scholar]
  56. Vallet I, Olson J. W, Lory S, Lazdunski A, Filloux A. 2001; The chaperone/usher pathways of Pseudomonas aeruginosa : identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci U S A 98:6911–6916 [CrossRef]
    [Google Scholar]
  57. Vallet I, Diggle S. P, Stacey R. E, Camara M, Ventre I, Lory S, Lazdunski A, Williams P, Filloux A. 2004; Biofilm formation in Pseudomonas aeruginosa : fimbrial cup gene clusters are controlled by the transcriptional regulator MvaT. J Bacteriol 186:2880–2890 [CrossRef]
    [Google Scholar]
  58. Van Delden C, Iglewski B. H. 1998; Cell-to-cell signalling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560 [CrossRef]
    [Google Scholar]
  59. Visca P, Leoni L, Wilson M. J, Lamont I. L. 2002; Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas . Mol Microbiol 45:1177–1190 [CrossRef]
    [Google Scholar]
  60. Wade D. S, Calfee M. W, Rocha E. R, Ling E. A, Engstrom E, Coleman J. P, Pesci E. C. 2005; Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa . J Bacteriol 187:4372–4380 [CrossRef]
    [Google Scholar]
  61. Wei B. L, Brun-Zinkernagel A. M, Simecka J. W, Pruss B. M, Babitzke P, Romeo T. 2001; Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli . Mol Microbiol 40:245–256 [CrossRef]
    [Google Scholar]
  62. West S. E, Sample A. K, Runyen-Janecky L. J. 1994; The vfr gene product, required for Pseudomonas aeruginosa exotoxin A and protease production, belongs to the cyclic AMP receptor protein family. J Bacteriol 176:7532–7542
    [Google Scholar]
  63. Whiteley M, Lee K. M, Greenberg E. P. 1999; Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 96:13904–13909 [CrossRef]
    [Google Scholar]
  64. Wolfgang M. C, Lee V. T, Gilmore M. E, Lory S. 2003; Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signalling pathway. Dev Cell 4:253–263 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28324-0
Loading
/content/journal/micro/10.1099/mic.0.28324-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error