1887

Abstract

is the most thoroughly studied species of a new bacterial phylogenetic group designated the phylum Acidobacteria. Through a search, the gene has been identified, and its product purified. Electrophoretic mobility shift assays have shown that LexA protein binds specifically to the direct repeat GTTCNGTTC motif. Strikingly, this is also the LexA box of the Alphaproteobacteria, but had not previously been described outside this subclass of the Proteobacteria. In addition, a phylogenetic analysis of the LexA protein clusters together and the Alphaproteobacteria, moving the latter away from their established phylogenetic position as a subclass of the Proteobacteria, and pointing to a lateral gene transfer of the gene from the phylum Acidobacteria, or an immediate ancestor, to the Alphaproteobacteria. Lastly, experiments demonstrate that the gene is DNA-damage inducible, despite the fact that a LexA-binding sequence is not present in its promoter region.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28376-0
2006-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/4/1109.html?itemId=/content/journal/micro/10.1099/mic.0.28376-0&mimeType=html&fmt=ahah

References

  1. Abella M, Erill I, Jara M, Mazón G, Campoy S, Barbé J. 2004; Widespread distribution of a lexA -regulated DNA damage-inducible multiple gene cassette in the Proteobacteria phylum. Mol Microbiol 54:212–222 [CrossRef]
    [Google Scholar]
  2. Boshoff H. I, Reed M. B, Barry C. D., 3rd, Mizrahi V. 2003; DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis . Cell 18:183–193
    [Google Scholar]
  3. Brooks P. C, Movahedazadeh F, Davis E. O. 2001; Identification of some DNA damage-inducible genes of Mycobacterium tuberculosis : apparent lack of correlation with LexA binding. J Bacteriol 183:4459–4467 [CrossRef]
    [Google Scholar]
  4. Bustin S. A. 2002; Quantification of mRNA using real-time reverse transcription PCR (RT-PCR); trends and problems. J Mol Endocrinol 29:23–39 [CrossRef]
    [Google Scholar]
  5. Campoy S, Llagostera M, Monteiro P. B, Mazón G, Fernández de Henestrosa A. R, Barbé J. 2002; A new regulatory DNA motif of the gamma subclass Proteobacteria: identification of the LexA protein binding site of the plant pathogen Xylella fastidiosa . Microbiology 148:3583–3597
    [Google Scholar]
  6. Campoy S, Fontes M, Padmanabhan S, Cortes P, Llagostera M, Barbe J. 2003; LexA-independent DNA damage-mediated induction of gene expression in Myxococcus xanthus . Mol Microbiol 49:769–781
    [Google Scholar]
  7. Castresana J. 2000; Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552 [CrossRef]
    [Google Scholar]
  8. Courcelle J, Khodursky A, Peter B, Brown P. O, Hanawalt P. C. 2001; Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli . Genetics 158:41–64
    [Google Scholar]
  9. Dubnau D, Lovett C. M. 2002; Transformation and recombination. In Bacillus Subtilis and its Closest Relatives: from Genes to Cells pp  453–471 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. Erill I, Escribano M, Campoy S, Barbé J. 2003; In silico analysis reveals substantial variability in the gene contents of the Gamma Proteobacteria LexA-regulon. Bioinformatics 19:2225–2236 [CrossRef]
    [Google Scholar]
  11. Erill I, Jara M, Salvador N, Escribano M, Campoy S, Barbé J. 2004; Differences in LexA regulon structure among Proteobacteria through in vivo assisted comparative genomics. Nucleic Acids Res 32:6617–6626 [CrossRef]
    [Google Scholar]
  12. Fernández de Henestrosa A. R, Rivera E, Tapias A, Barbé J. 1998; Identification of the Rhodobacter sphaeroides SOS box. Mol Microbiol 28:991–1003 [CrossRef]
    [Google Scholar]
  13. Fernández de Henestrosa A. R, Ogi T, Aoyagi S, Chafin D, Hayes J. J, Ohmori H, Woodgate R. 2000; Identification of additional genes belonging to the LexA regulon in Escherichia coli . Mol Microbiol 35:1560–1572
    [Google Scholar]
  14. Fernández de Henestrosa A. R, Cuñé J, Erill I, Magnuson J. K, Barbé J. 2002; A green nonsulfur bacterium, Dehalococcoides ethenogenes , with the LexA binding sequence found in Gram-positive organisms. J Bacteriol 184:6073–6080 [CrossRef]
    [Google Scholar]
  15. Galhardo R. S, Rocha R. P, Marques M. V, Menck C. F. M. 2005; An SOS-regulated operon involved in damage-inducible mutagenesis in Caulobacter crescentus . Nucleic Acids Res 33:2603–2614 [CrossRef]
    [Google Scholar]
  16. Griffiths E, Gupta R. S. 2001; The use of signature sequences in different proteins to determine the relative branching order of bacterial divisions: evidence that Fibrobacter diverged at a similar time to Chlamydia and the Cytophaga-Flavobacterium-Bacteroides division. Microbiology 147:2611–2622
    [Google Scholar]
  17. Hall T. A. 1999; bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  18. Hanna M. N, Ferguson R. J, Li Y.-H, Cvitkovitch D. G. 2001; uvrA is an acid-inducible gene involved in the adaptative response to low pH in Streptococcus mutans . J Bacteriol 183:5964–5973 [CrossRef]
    [Google Scholar]
  19. Hiraishi A, Kishimoto N, Kosako Y, Wakao N, Tano T. 1995; Phylogenetic position of the menaquinone-containing acidophilic chemo-organotroph Acidobacterium capsulatum . FEMS Microbiol Lett 132:91–94 [CrossRef]
    [Google Scholar]
  20. Kishimoto N, Kosako Y, Tano T. 1991; Acidobacterium capsulatum gen. nov., sp. nov. An acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr Microbiol 22:1–7 [CrossRef]
    [Google Scholar]
  21. Knegtel R. M. A, Fogh R. H, Ottleben G, Schnarr M, Boelens R, Kaptein R, Rüterjans H, Dumoulin P. 1995; A model for the LexA repressor DNA complex. Proteins 21:226–236 [CrossRef]
    [Google Scholar]
  22. Little J. W. 1991; Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie 73:411–422 [CrossRef]
    [Google Scholar]
  23. Little J. W, Edminston S, Pacelli L, Mount D. 1980; Cleavage of the Escherichia coli LexA protein by the RecA protease. Proc Natl Acad Sci U S A 77:3225–3229 [CrossRef]
    [Google Scholar]
  24. Little J. W, Mount D, Yanish-Perron C. R. 1981; Purified LexA protein is a repressor of the recA and lexA genes. Proc Natl Acad Sci U S A 78:4199–4203 [CrossRef]
    [Google Scholar]
  25. Ludwig W, Bauer S. H, Bauer M. 7 other authors 1997; Detection and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol Lett 153:181–190 [CrossRef]
    [Google Scholar]
  26. Mazón G, Lucena J. M, Campoy S, Candau P, Fernández de Henestrosa A. R, Barbé J. 2004a; LexA-binding sequences in Gram-positive and cyanobacteria are closely related. Mol Gen Genomics 271:40–49 [CrossRef]
    [Google Scholar]
  27. Mazón G, Erill I, Campoy S, Cortés P, Forano E, Barbé J. 2004b; Reconstruction of the evolutionary history of the LexA-binding sequence. Microbiology 150:3783–3795 [CrossRef]
    [Google Scholar]
  28. Notredame C, Higgins D, Heringa J. 2000; T-Coffee: a novel method for multiple sequence alignments. J Mol Biol 302:205–217 [CrossRef]
    [Google Scholar]
  29. Page R. D. M. 1996; treeview: an application to display phylogenetic trees on personal computers. CABIOS 12:357–358
    [Google Scholar]
  30. Quaiser A, Ochsenreiter C. L, Schuster S. C, Treusch A. H, Eck J, Schleper C. 2003; Acidobacteria form a coherent but highly diverse group within the bacterial domain: evidence from environmental genomics. Mol Microbiol 50:563–575 [CrossRef]
    [Google Scholar]
  31. Raja N, Goodson M, Chui W. C, Smith D. G, Rowbury R. J. 1991; Habituation to acid in Escherichia coli : conditions for habituation and its effects on plasmid transfer. J Appl Bacteriol 70:59–65 [CrossRef]
    [Google Scholar]
  32. Ramesar R. S, Abratt V, Woods D. R, Rawlings D. E. 1989; Nucleotide sequence and expression of a cloned Thiobacillus ferrooxidans recA gene in Escherichia coli . Gene 78:1–8 [CrossRef]
    [Google Scholar]
  33. Ronquist F, Huelsenbeck J. P. 2003; mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574 [CrossRef]
    [Google Scholar]
  34. Sambrook J, Fritsch E. F, Maniatis T. 1992 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Sanger F, Nicklen S, Coulson S. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [CrossRef]
    [Google Scholar]
  36. Sassanfar M, Roberts J. W. 1990; Nature of SOS-inducing signal in Escherichia coli . The involvement of DNA replication. J Mol Biol 212:79–96 [CrossRef]
    [Google Scholar]
  37. Tapias A, Barbé J. 1999; Regulation of divergent transcription from the uvrA-ssb promoters in Sinorhizobium meliloti . Mol Gen Genet 262:121–130 [CrossRef]
    [Google Scholar]
  38. Tapias A, Fernández S, Alonso J. C, Barbé J. 2002; Rhodobacter sphaeroides LexA has dual activity: optimising and repressing recA gene transcription. Nucleic Acids Res 30:1539–1546 [CrossRef]
    [Google Scholar]
  39. Thompson S. A, Blaser M. J. 1995; Isolation of the Helicobacter pylori recA gene and involvement of the recA region in resistance to low pH. Infect Immun 63:2185–2193
    [Google Scholar]
  40. Thompson J. D, Higgins D. G, Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  41. Tomb J. F, White O, Kerlavage A. R. 39 other authors 1997; The complete genome sequence of the gastric pathogen Helicobacter pylori . Nature 388:539–547 [CrossRef]
    [Google Scholar]
  42. Walker G. C. 1984; Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli . Microbiol Rev 48:60–93
    [Google Scholar]
  43. Winterling K. W, Chafin D, Hayes J. J, Sun J, Levine A. S, Yasbin R. E, Woodgate R. 1998; The Bacillus subtilis DinR binding site: redefinition of the consensus sequence. J Bacteriol 180:2201–2211
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28376-0
Loading
/content/journal/micro/10.1099/mic.0.28376-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error