1887

Abstract

This paper reports an analysis of the functional interactions between type IV secretion systems (T4SS) that are part of the conjugative machinery for horizontal DNA transfer (cT4SS), and T4SS involved in bacterial pathogenicity (pT4SS). The authors' previous work showed that a conjugative coupling protein (T4CP) interacts with the VirB10-type component of the T4SS in order to recruit the protein–DNA complex to the transporter for conjugative DNA transfer. This study now shows by two-hybrid analysis that conjugative T4CPs also interact with the VirB10 element of the pT4SS of (), () and (). Moreover, the VirB10 component of a cT4SS (protein TrwE of plasmid R388) could be partially substituted by that of a pT4SS (protein TrwE of ) for conjugation. This result opens the way for the construction of hybrid T4SS that deliver DNA into animal cells. Interestingly, in the presence of part of the T4SS the R388 T4SS protein levels were decreased and R388 conjugation was strongly inhibited. Complementation assays between the Trw systems of R388 and showed that only individual components from the so-called ‘core complex’ could be exchanged, supporting the concept that this core is the common scaffold for the transport apparatus while the other ‘peripheral components' are largely system-specific.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28410-0
2005-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/11/3505.html?itemId=/content/journal/micro/10.1099/mic.0.28410-0&mimeType=html&fmt=ahah

References

  1. Alegria M. C., Souza D. P., Andrade M. O., Docena C., Khater L., Ramos C. H., da Silva A. C., Farah C. S. 2005; Identification of new protein-protein interactions involving the products of the chromosome- and plasmid-encoded type IV secretion loci of the phytopathogen Xanthomonas axonopodis pv. citri . J Bacteriol 187:2315–2325 [CrossRef]
    [Google Scholar]
  2. Atmakuri K., Ding Z., Christie P. J. 2003; VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens . Mol Microbiol 49:1699–1713 [CrossRef]
    [Google Scholar]
  3. Atmakuri K., Cascales E., Christie P. J. 2004; Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol 54:1199–1211 [CrossRef]
    [Google Scholar]
  4. Baron C., Thorstenson Y. R., Zambryski P. C. 1997; The lipoprotein VirB7 interacts with VirB9 in the membranes of Agrobacterium tumefaciens . J Bacteriol 179:1211–1218
    [Google Scholar]
  5. Bartolomé B., Jubete Y., de la Cruz F, Martínez E. 1991; Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene 102:75–78 [CrossRef]
    [Google Scholar]
  6. Beaupre C. E., Bohne J., Dale E. M., Binns A. N. 1997; Interactions between VirB9 and VirB10 membrane proteins involved in movement of DNA from Agrobacterium tumefaciens into plant cells. J Bacteriol 179:78–89
    [Google Scholar]
  7. Berger B. R., Christie P. J. 1994; Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes. J Bacteriol 176:3646–3660
    [Google Scholar]
  8. Bolland S., Llosa M., Avila P., de la Cruz F. 1990; General organization of the conjugal transfer genes of the IncW plasmid R388 and interactions between R388 and IncN and IncP plasmids. J Bacteriol 172:5795–5802
    [Google Scholar]
  9. Boschiroli M. L., Ouahrani-Bettache S., Foulongne V. & 7 other authors; 2002; The Brucella suis virB operon is induced intracellularly in macrophages. Proc Natl Acad Sci U S A 99:1544–1549 [CrossRef]
    [Google Scholar]
  10. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli . J Mol Biol 41:459–472 [CrossRef]
    [Google Scholar]
  11. Bruce K. D., Jordens J. Z. 1991; Characterization of noncapsulate Haemophilus influenzae by whole-cell polypeptide profiles, restriction endonuclease analysis, and rRNA gene restriction patterns. J Clin Microbiol 29:291–296
    [Google Scholar]
  12. Cabezón E., Sastre J. I., de la Cruz F. 1997; Genetic evidence of a coupling role for the TraG protein family in bacterial conjugation. Mol Gen Genet 254:400–406 [CrossRef]
    [Google Scholar]
  13. Cascales E., Christie P. J. 2003; The versatile bacterial Type IV secretion systems. Nat Rev Microbiol 1:137–149 [CrossRef]
    [Google Scholar]
  14. Cascales E., Christie P. J. 2004a; Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304:1170–1173 [CrossRef]
    [Google Scholar]
  15. Cascales E., Christie P. J. 2004b; Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc Natl Acad Sci U S A 101:17228–17233 [CrossRef]
    [Google Scholar]
  16. Chow W. Y., Berg D. E. 1988; Tn 5 tac1, a derivative of transposon Tn 5 that generates conditional mutations. Proc Natl Acad Sci U S A 85:6468–6472 [CrossRef]
    [Google Scholar]
  17. Das A., Xie Y. H. 2000; The Agrobacterium T-DNA transport pore proteins VirB8, VirB9, and VirB10 interact with one another. J Bacteriol 182:758–763 [CrossRef]
    [Google Scholar]
  18. Das A., Anderson L. B., Xie Y. H. 1997; Delineation of the interaction domains of Agrobacterium tumefaciens VirB7 and VirB9 by use of the yeast two-hybrid assay. J Bacteriol 179:3404–3409
    [Google Scholar]
  19. Farizo K. M., Cafarella T. G., Burns D. L. 1996; Evidence for a ninth gene, ptlI , in the locus encoding the pertussis toxin secretion system of Bordetella pertussis and formation of a PtlI-PtlF complex. J Biol Chem 271:31643–31649 [CrossRef]
    [Google Scholar]
  20. Gomis-Rüth F. X., Moncalián G., Pérez-Luque R., González A., Cabezón E., de la Cruz F., Coll M. 2001; The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409:637–641 [CrossRef]
    [Google Scholar]
  21. Grandoso G., Llosa M., Zabala J. C., de la Cruz F. 1994; Purification and biochemical characterization of TrwC, the helicase involved in plasmid R388 conjugal DNA transfer. Eur J Biochem 226:403–412 [CrossRef]
    [Google Scholar]
  22. Grant S. G., Jessee J., Bloom F. R., Hanahan D. 1990; Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87:4645–4649 [CrossRef]
    [Google Scholar]
  23. Hapfelmeier S., Domke N., Zambryski P. C., Baron C. 2000; VirB6 is required for stabilization of VirB5 and VirB3 and formation of VirB7 homodimers in Agrobacterium tumefaciens . J Bacteriol 182:4505–4511 [CrossRef]
    [Google Scholar]
  24. Hoppner C., Liu Z., Domke N., Binns A. N., Baron C. 2004; VirB1 orthologs from Brucella suis and pKM101 complement defects of the lytic transglycosylase required for efficient type IV secretion from Agrobacterium tumefaciens . J Bacteriol 186:1415–1422 [CrossRef]
    [Google Scholar]
  25. Jakubowski S. J., Krishnamoorthy V., Cascales E., Christie P. J. 2004; Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion. Syst J Mol Biol 341:961–977 [CrossRef]
    [Google Scholar]
  26. Jakubowski S. J., Cascales E., Krishnamoorthy V., Christie P. J. 2005; Agrobacterium tumefaciens VirB9, an outer-membrane-associated component of a Type IV secretion system, regulates substrate selection and T-pilus biogenesis. J Bacteriol 187:3486–3495 [CrossRef]
    [Google Scholar]
  27. Karimova G., Pidoux J., Ullmann A., Ladant D. 1998; A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95:5752–5756 [CrossRef]
    [Google Scholar]
  28. Karimova G., Ullmann A., Ladant D. 2001; Protein-protein interaction between Bacillus stearothermophilus tyrosyl-tRNA synthetase subdomains revealed by a bacterial two-hybrid system. J Mol Microbiol Biotechnol 3:73–82
    [Google Scholar]
  29. Karimova G., Dautin N., Ladant D. 2005; Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol 187:2233–2243 [CrossRef]
    [Google Scholar]
  30. Koraimann G. 2003; Lytic transglycosylases in macromolecular transport systems of Gram-negative bacteria. Cell Mol Life Sci 60:2371–2388 [CrossRef]
    [Google Scholar]
  31. Krall L., Wiedemann U., Unsin G., Weiss S., Domke N., Baron C. 2002; Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens . Proc Natl Acad Sci U S A 99:11405–11410 [CrossRef]
    [Google Scholar]
  32. Kumar R. B., Xie Y. H., Das A. 2000; Subcellular localization of the Agrobacterium tumefaciens T-DNA transport pore proteins: VirB8 is essential for the assembly of the transport pore. Mol Microbiol 36:608–617
    [Google Scholar]
  33. Kushner S. R., Nagaishi H., Templin A., Clark A. J. 1971; Genetic recombination in Escherichia coli : the role of exonuclease I. Proc Natl Acad Sci U S A 68:824–827 [CrossRef]
    [Google Scholar]
  34. Lai E. M., Kado C. I. 1998; Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens . J Bacteriol 180:2711–2717
    [Google Scholar]
  35. Llosa M., de la Cruz F. 2005; Bacterial conjugation: a potential tool for genomic engineering. Res Microbiol 156:1–6 [CrossRef]
    [Google Scholar]
  36. Llosa M., O'Callaghan D. 2004; Euroconference on the biology of Type IV secretion processes: bacterial gates into the outer world. Mol Microbiol 53:1–8 [CrossRef]
    [Google Scholar]
  37. Llosa M., Jubete Y., de la Cruz F. 1991; Tn 5 tac1 insertion polarity in Escherichia coli . Plasmid 26:222–224 [CrossRef]
    [Google Scholar]
  38. Llosa M., Bolland S., de la Cruz F. 1994; Genetic organization of the conjugal DNA processing region of the IncW plasmid R388. J Mol Biol 235:448–464 [CrossRef]
    [Google Scholar]
  39. Llosa M., Zunzunegui S., de la Cruz F. 2003; Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc Natl Acad Sci U S A 100:10465–10470 [CrossRef]
    [Google Scholar]
  40. Martínez E., de la Cruz F. 1988; Transposon Tn 21 encodes a RecA-independent site-specific integration system. Mol Gen Genet 211:320–325 [CrossRef]
    [Google Scholar]
  41. Miller J. H. 1992 A Short Course in Bacterial Genetics : a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Moncalián G., Grandoso G., Llosa M., de la Cruz F. 1997; oriT -processing and regulatory roles of TrwA protein in plasmid R388 conjugation. J Mol Biol 270:188–200 [CrossRef]
    [Google Scholar]
  43. More M. I., Pohlman R. F., Winans S. C. 1996; Genes encoding the pKM101 conjugal mating pore are negatively regulated by the plasmid-encoded KorA and KorB proteins. J Bacteriol 178:4392–4399
    [Google Scholar]
  44. Núñez B., de la Cruz F. 2001; Two atypical mobilization proteins are involved in plasmid CloDF13 relaxation. Mol Microbiol 39:1088–1099 [CrossRef]
    [Google Scholar]
  45. O'Callaghan D., Cazevieille C., Allardet-Servent A., Boschiroli M. L., Bourg G., Foulongne V., Frutos P., Kulakov Y., Ramuz M. 1999; A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis . Mol Microbiol 33:1210–1220
    [Google Scholar]
  46. Rivas S., Bolland S., Cabezón E., Goñi F. M., de la Cruz F. 1997; TrwD, a protein encoded by the IncW plasmid R388, displays an ATP hydrolase activity essential for bacterial conjugation. J Biol Chem 272:25583–25590 [CrossRef]
    [Google Scholar]
  47. Rouot B., Alvarez-Martinez M. T., Marius C. & 7 other authors; 2003; Production of the type IV secretion system differs among Brucella species as revealed with VirB5- and VirB8-specific antisera. Infect Immun 71:1075–1082 [CrossRef]
    [Google Scholar]
  48. Sadler J. R., Tecklenburg M., Betz J. L. 1980; Plasmids containing many tandem copies of a synthetic lactose operator. Gene 8:279–300 [CrossRef]
    [Google Scholar]
  49. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  50. Sastre J. I. 1996; El extremo carboxilo de la proteína TraD del plásmido F confiere especificidad y eficiencia en el proceso de la conjugación . PhD Thesis Universidad de Cantabria;
  51. Schmidt-Eisenlohr H., Domke N., Baron C. 1999; TraC of IncN plasmid pKM101 associates with membranes and extracellular high-molecular-weight structures in Escherichia coli . J Bacteriol 181:5563–5571
    [Google Scholar]
  52. Schröder G., Dehio C. 2005; Virulence-associated type IV secretion systems of Bartonella . Trends Microbiol 13:336–342 [CrossRef]
    [Google Scholar]
  53. Seubert A., Hiestand R., de la Cruz F., Dehio C. 2003; A bacterial conjugation machinery recruited for pathogenesis. Mol Microbiol 49:1253–1266 [CrossRef]
    [Google Scholar]
  54. Shamaei-Tousi A., Cahill R., Frankel G. 2004; Interaction between protein subunits of the type IV secretion system of Bartonella henselae . J Bacteriol 186:4796–4801 [CrossRef]
    [Google Scholar]
  55. Spudich G. M., Fernandez D., Zhou X. R., Christie P. J. 1996; Intermolecular disulfide bonds stabilize VirB7 homodimers and VirB7/VirB9 heterodimers during biogenesis of the Agrobacterium tumefaciens T-complex transport apparatus. Proc Natl Acad Sci U S A 93:7512–7517 [CrossRef]
    [Google Scholar]
  56. Stewart G. S., Lubinsky-Mink S., Jackson C. G., Cassel A., Kuhn J. 1986; pHG165: a pBR322 copy number derivative of pUC8 for cloning and expression. Plasmid 15:172–181 [CrossRef]
    [Google Scholar]
  57. Tato I., Zunzunegui S., de la Cruz F., Cabezón E. 2005; TrwB, the coupling protein involved in DNA transport during bacterial conjugation, is a DNA-dependent ATPase. Proc Natl Acad Sci U S A 102:8156–8161 [CrossRef]
    [Google Scholar]
  58. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354 [CrossRef]
    [Google Scholar]
  59. Vergunst A. C., Schrammeijer B., den Dulk-Ras A., de Vlaam C. M., Regensburg-Tuink T. J., Hooykaas P. J. 2000; VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290:979–982 [CrossRef]
    [Google Scholar]
  60. Ward D. V., Draper O., Zupan J. R., Zambryski P. C. 2002; Peptide linkage mapping of the Agrobacterium tumefaciens vir -encoded type IV secretion system reveals protein subassemblies. Proc Natl Acad Sci U S A 99:11493–11500 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28410-0
Loading
/content/journal/micro/10.1099/mic.0.28410-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error