1887

Abstract

MerR, the metalloregulator of the bacterial mercury resistance () operon, binds Hg(II) with high affinity. To study the mechanism of metal-induced activation, a small protein was previously engineered embodying in a single polypeptide the metal-binding domain (MBD) ordinarily formed between two monomers of MerR. Here the physiological and biochemical properties of MBD expressed on the cell surface or in the cytosol were examined, to better understand the environments in which specific metal binding can occur with this small derivative. Over 20 000 surface copies of MBD were expressed per cell, with metal stoichiometries of ∼1·0 Hg(II) per MBD monomer. Cells expressing MBD on their surface in rich medium bound 6·1-fold more Hg(II) than those not expressing MBD. Although in nature cells use the entire operon to detoxify mercury, it was interesting to note that cells expressing only MBD survived Hg(II) challenge and recovered more quickly than cells without MBD. Cell-surface-expressed MBD bound Hg(II) preferentially even in the presence of a 22-fold molar excess of Zn(II) and when exposed to equimolar Cd(II) in addition. MBD expressed in the cystosol also afforded improved survival from Hg(II) exposure for and for the completely unrelated bacterium .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28474-0
2006-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/3/709.html?itemId=/content/journal/micro/10.1099/mic.0.28474-0&mimeType=html&fmt=ahah

References

  1. Bae W, Chen W, Mulchandani A, Mehra R. K. 2000; Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol Bioeng 70:518–524 [CrossRef]
    [Google Scholar]
  2. Bae W, Mehra R. K, Mulchandani A, Chen W. 2001; Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury. Appl Environ Microbiol 67:5335–5338 [CrossRef]
    [Google Scholar]
  3. Bae W, Mulchandani A, Chen W. 2002; Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaccumulation. J Inorg Biochem 88:223–227 [CrossRef]
    [Google Scholar]
  4. Bae W, Wu C. H, Kostal J, Mulchandani A, Chen W. 2003; Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl Environ Microbiol 69:3176–3180 [CrossRef]
    [Google Scholar]
  5. Balish M. F, Hahn T. W, Popham P. L, Krause D. C. 2001; Stability of Mycoplasma pneumoniae cytadherence-accessory protein HMW1 correlates with its association with the triton shell. J Bacteriol 183:3680–3688 [CrossRef]
    [Google Scholar]
  6. Barkay T, Miller S. M, Summers A. O. 2003; Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384 [CrossRef]
    [Google Scholar]
  7. Brim H, McFarlan S. C, Fredrickson J. K, Minton K. W, Zhai M, Wackett L. P, Daly M. J. 2000; Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18:85–90 [CrossRef]
    [Google Scholar]
  8. Caguiat J, Watson A. L, Summers A. O. 1999; Cd(II)-responsive and constitutive mutants implicate a novel domain in MerR. J Bacteriol 181:3462–3471
    [Google Scholar]
  9. Chaney R. L, Malik M, Li Y. M, Brown S. L, Brewer E. P, Angle J. S, Baker A. J. 1997; Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284 [CrossRef]
    [Google Scholar]
  10. Changela A, Chen K, Xue Y, Holschen J, Outten C. E, O'Halloran T. V, Mondragon A. 2003; Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301:1383–1387 [CrossRef]
    [Google Scholar]
  11. Chen S, Wilson D. B. 1997a; Genetic engineering of bacteria and their potential for Hg[sup]2+[/sup] bioremediation. Biodegradation 8:97–103 [CrossRef]
    [Google Scholar]
  12. Chen S, Wilson D. B. 1997b; Construction and characterization of Escherichia coli genetically engineered for bioremediation of Hg[sup]2+[/sup]-contaminated environments. Appl Environ Microbiol 63:2442–2445
    [Google Scholar]
  13. Chen S, Kim E, Shuler M. L, Wilson D. B. 1998; Hg[sup]2+[/sup] removal by genetically engineered Escherichia coli in a hollow fiber bioreactor. Biotechnol Prog 14:667–671 [CrossRef]
    [Google Scholar]
  14. Condee C. W, Summers A. O. 1992; A mer-lux transcriptional fusion for real-time examination of in vivo induction kinetics and promoter response to altered superhelicity. J Bacteriol 174:8094–8101
    [Google Scholar]
  15. Daugherty P. S, Olsen M. J, Iverson B. L, Georgiou G. 1999; Development of an optimized expression system for the screening of antibody libraries displayed on the Escherichia coli surface. Protein Eng 12:613–621 [CrossRef]
    [Google Scholar]
  16. Deng X, Wilson D. B. 2001; Bioaccumulation of mercury from wastewater by genetically engineered Escherichia coli . Appl Microbiol Biotechnol 56:276–279 [CrossRef]
    [Google Scholar]
  17. Eicken C, Pennella M. A, Chen X, Koshlap K. M, VanZile M. L, Sacchettini J. C, Giedroc D. P. 2003; A metal-ligand-mediated intersubunit allosteric switch in related SmtB/ArsR zinc sensor proteins. J Mol Biol 333:683–695 [CrossRef]
    [Google Scholar]
  18. Fahey R. C. 2001; Novel thiols of prokaryotes. Annu Rev Microbiol 55:333–356 [CrossRef]
    [Google Scholar]
  19. Francisco J. A, Earhart C. F, Georgiou G. 1992; Transport and anchoring of beta-lactamase to the external surface of Escherichia coli . Proc Natl Acad Sci U S A 89:2713–2717 [CrossRef]
    [Google Scholar]
  20. Francisco J. A, Campbell R, Iverson B. L, Georgiou G. 1993; Production and fluorescence-activated cell sorting of Escherichia coli expressing a function antibody fragment on the external surface. Proc Natl Acad Sci U S A 90:10444–10448 [CrossRef]
    [Google Scholar]
  21. Fuhrmann M, Melamed D, Kalb P. D, Adams J. W, Milian L. W. 2002; Sulfur polymer solidification/stabilization of elemental mercury waste. Waste Manag 22:327–333 [CrossRef]
    [Google Scholar]
  22. Gadd G. M. 2000; Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279 [CrossRef]
    [Google Scholar]
  23. Georgiou G, Stephens D. L, Stathopoulos C. 1996; Display of beta-lactamase on the Escherichia coli suface: outer membrane phenotypes conferred by Lpp′-OmpA′-beta-lactamase. Protein Eng 9:239–247 [CrossRef]
    [Google Scholar]
  24. Goldman L. R, Shannon M. W. 2001; Technical report: mercury in the environment: implications for pediatricians. Pediatrics 108:197–205 [CrossRef]
    [Google Scholar]
  25. Graille M, Stura E. A, Corper A. L, Sutton B. J, Taussig M. J, Charbonnier J. B, Silverman G. J. 2000; Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc Natl Acad Sci U S A 97:5399–5404 [CrossRef]
    [Google Scholar]
  26. Hamlett N. V, Landale E. C, Davis B. H, Summers A. O. 1992; Roles of the Tn 21 merT, merP , and merC gene products in mercury resistance and mercury binding. J Bacteriol 174:6377–6385
    [Google Scholar]
  27. Helmann J. D, Ballard B. T, Walsh C. T. 1990; The MerR metalloregulatory protein binds mercuric ion as a tricoordinate, metal-bridged dimer. Science 247:946–948 [CrossRef]
    [Google Scholar]
  28. Kotrba P, Doleckova L, de Lorenzo V, Ruml T. 1999a; Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides. Appl Environ Microbiol 65:1092–1098
    [Google Scholar]
  29. Kotrba P, Pospisil P, de Lorenzo V, Ruml T. 1999b; Enhanced metallosorption of Escherichia coli cells due to surface display of beta- and alpha-domains of mammalian metallothionein as a fusion to LamB protein. J Recept Signal Transduct Res 19:703–715 [CrossRef]
    [Google Scholar]
  30. Kulkarni R, Summers A. O. 1999; MerR crosslinks to the α , β , and σ [sup]70[/sup] subunits of RNA polymerase in the preinitiation complex at the merTPCAD promoter. Biochemistry 38:3362–3368 [CrossRef]
    [Google Scholar]
  31. Ledwidge R, Patel B, Dong A, Fiedler D, Falkowski M, Zelikova J, Summers A. O, Pai E. F, Miller S. M. 2005; NMerA, the metal binding domain of mercuric ion reductase removes Hg[sup]2+[/sup] from proteins, delivers it to the catalytic core and protects cells under glutathione-depleted conditions. Biochemistry 44:11402–11416 [CrossRef]
    [Google Scholar]
  32. Lobell R. B, Schleif R. F. 1990; DNA looping and unlooping by AraC protein. Science 250:528–532 [CrossRef]
    [Google Scholar]
  33. Lugtenberg B, Van Alphen L. 1983; Molecular architecture and functioning of the outer membrane of Escherichia coli and other Gram-negative bacteria. Biochim Biophys Acta 737:51–115 [CrossRef]
    [Google Scholar]
  34. Mangia A. H, Teixeira L. M, Costa e Silva Filho F. 1995; The electrokinetic surface of five enteropathogenic Escherichia coli serogroups. Cell Biophys 26:45–55 [CrossRef]
    [Google Scholar]
  35. McAuliffe C. A. 1977 The Chemistry of Mercury London: MacMillan;
    [Google Scholar]
  36. McIntyre T. 2003; Phytoremediation of heavy metals from soils. Adv Biochem Eng Biotechnol 78:97–123
    [Google Scholar]
  37. Meagher R. B. 2000; Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162 [CrossRef]
    [Google Scholar]
  38. Mejare M, Bulow L. 2001; Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73
    [Google Scholar]
  39. Mulligan C. N, Yong R. N, Gibbs B. F. 2001; An evaluation of technologies for the heavy metal remediation of dredged sediments. J Hazard Mater 85:145–163 [CrossRef]
    [Google Scholar]
  40. Nelson J. W, Creighton T. E. 1994; Reactivity and ionization of the active site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Biochemistry 33:5974–5983 [CrossRef]
    [Google Scholar]
  41. Ralston D. M, O'Halloran T. V. 1990; Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Proc Natl Acad Sci U S A 87:3846–3850 [CrossRef]
    [Google Scholar]
  42. Ross W, Park S.-J, Summers A. O. 1989; Genetic analysis of transcriptional activation and repression in the Tn 21 mer operon. J Bacteriol 171:4009–4018
    [Google Scholar]
  43. Song L, Caguiat J, Li Z, Shokes J, Scott R. A, Olliff L, Summers A. O. 2004; Engineered single-chain, antiparallel, coiled coil mimics the MerR metal binding site. J Bacteriol 186:1861–1868 [CrossRef]
    [Google Scholar]
  44. Sousa C, Cebolla A, de Lorenzo V. 1996; Enhanced metalloadsorption of bacterial cells displaying poly-His peptides. Nat Biotechnol 14:1017–1020 [CrossRef]
    [Google Scholar]
  45. Sousa C, Kotrba P, Ruml T, Cebolla A, De Lorenzo V. 1998; Metalloadsorption by Escherichia coli cells displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB. J Bacteriol 180:2280–2284
    [Google Scholar]
  46. Summers A. O, Kight-Olliff L, Slater C. 1982; Effect of catabolite repression of the mer operon. J Bacteriol 149:191–197
    [Google Scholar]
  47. Tchounwou P. B, Ayensu W. K, Ninashvili N, Sutton D. 2003; Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18:149–175 [CrossRef]
    [Google Scholar]
  48. Valls M, Gonzalez-Duarte R, Atrian S, De Lorenzo V. 1998; Bioaccumulation of heavy metals with protein fusions of metallothionein to bacterial OMPs. Biochimie 80:855–861 [CrossRef]
    [Google Scholar]
  49. Valls M, Atrian S, de Lorenzo V, Fernandez L. A. 2000a; Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol 18:661–665 [CrossRef]
    [Google Scholar]
  50. Valls M, de Lorenzo V, Gonzalez-Duarte R, Atrian S. 2000b; Engineering outer-membrane proteins in Pseudomonas putida for enhanced heavy-metal bioadsorption. J Inorg Biochem 79:219–223 [CrossRef]
    [Google Scholar]
  51. Vieira R. H, Volesky B. 2000; Biosorption: a solution to pollution?. Int Microbiol 3:17–24
    [Google Scholar]
  52. Wong M. D, Lin Y. F, Rosen B. P. 2002; The soft metal ion binding sites in the Staphylococcus aureus pI258 CadC Cd(II)/Pb(II)/Zn(II)-responsive repressor are formed between subunits of the homodimer. J Biol Chem 277:40930–40936 [CrossRef]
    [Google Scholar]
  53. Wright J. G, Tsang H.-T, Penner-Hahn J. E, O'Halloran T. V. 1990; Coordination chemistry of the Hg-MerR metalloregulatory protein: evidence for a novel tridentate Hg-cysteine receptor site. J Am Chem Soc 112:2434–2435 [CrossRef]
    [Google Scholar]
  54. Zeng Q, Stalhandske C, Anderson M. C, Scott R. A, Summers A. O. 1998; The core metal-recognition domain of MerR . Biochemistry 37:15885–15895 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28474-0
Loading
/content/journal/micro/10.1099/mic.0.28474-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error