1887

Abstract

Bacterial fructosyltransferase (FTF) enzymes synthesize fructan polymers from sucrose. FTFs catalyse two different reactions, depending on the nature of the acceptor, resulting in: (i) transglycosylation, when the growing fructan chain (polymerization), or mono- and oligosaccharides (oligosaccharide synthesis), are used as the acceptor substrate; (ii) hydrolysis, when water is used as the acceptor. 121 levansucrase (Lev) and inulosucrase (Inu) enzymes are closely related at the amino acid sequence level (86 % similarity). Also, the eight amino acid residues known to be involved in catalysis and/or sucrose binding are completely conserved. Nevertheless, these enzymes differ markedly in their reaction and product specificities, i.e. in (2→6)- versus (2→1)-glycosidic-bond specificity (resulting in levan and inulin synthesis, respectively), and in the ratio of hydrolysis versus transglycosylation activities [resulting in glucose and fructooligosaccharides (FOSs)/polymer synthesis, respectively]. The authors report a detailed characterization of the transglycosylation reaction products synthesized by the 121 Lev and Inu enzymes from sucrose and related oligosaccharide substrates. Lev mainly converted sucrose into a large levan polymer (processive reaction), whereas Inu synthesized mainly a broad range of FOSs of the inulin type (non-processive reaction). Interestingly, the two FTF enzymes were also able to utilize various inulin-type FOSs (1-kestose, 1,1-nystose and 1,1,1-kestopentaose) as substrates, catalysing a disproportionation reaction; to the best of our knowledge, this has not been reported for bacterial FTF enzymes. Based on these data, a model is proposed for the organization of the sugar-binding subsites in the two 121 FTF enzymes. This model also explains the catalytic mechanism of the enzymes, and differences in their product specificities.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28484-0
2006-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/4/1187.html?itemId=/content/journal/micro/10.1099/mic.0.28484-0&mimeType=html&fmt=ahah

References

  1. Albenne C, Skov L. K, Mirza O, Gajhede M, Potocki-Veronese G, Monsan P, Remaud-Simeon M. 2002; Maltooligosaccharide disproportionation reaction: an intrinsic property of amylosucrase from Neisseria polysaccharea . FEBS Lett 527:67–70 [CrossRef]
    [Google Scholar]
  2. Baird J. K, Longyear V. M. C, Ellwood D. C. 1973; Water insoluble and soluble glucans produced by extracellular glycosyltransferases from Streptococcus mutans . Microbios 8:143–150
    [Google Scholar]
  3. Casas I. A, Edens F. W, Dobrogosz W. J. 1998; Lactobacillus reuteri : an effective probiotic for poultry and other animals. In Lactic Acid Bacteria: Microbiological and Functional Aspects pp  475–518 Edited by Salminen W., Wright A. Von. New York: Marcel Dekker;
    [Google Scholar]
  4. Chambert R, Gonzy-Treboul G. 1976; Levansucrase of Bacillus subtilis . Characterization of a stabilized fructosyl–enzyme complex and identification of an aspartyl residue as the binding site of the fructosyl group. Eur J Biochem 71:493–508 [CrossRef]
    [Google Scholar]
  5. Chambert R, Petit-Glatron M. F. 1991; Polymerase and hydrolase activities of Bacillus subtilis levansucrase can be separately modulated by site-directed mutagenesis. Biochem J 279:35–41
    [Google Scholar]
  6. Chambert R, Treboul G, Dedonder R. 1974; Kinetic studies of levansucrase of Bacillus subtilis . Eur J Biochem 41:285–300 [CrossRef]
    [Google Scholar]
  7. Coutinho P. M, Henrissat B. 1999; Carbohydrate-active enzymes: an integrated database approach. In Recent Advances in Carbohydrate Bioengineering pp  3–12 Edited by Gilbert H. J., Davies G. J., Henrissat B., Svensson B. Cambridge, UK: The Royal Society of Chemistry;
    [Google Scholar]
  8. Davies G. J, Wilson K. S, Henrissat B. 1997; Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321:557–559
    [Google Scholar]
  9. Doelle H. W, Kirk L, Crittenden R, Toh H, Doelle M. B. 1993; Zymomonas mobilis – science and industrial application. Crit Rev Biotechnol 13:57–98 [CrossRef]
    [Google Scholar]
  10. Euzenat O, Guibert A, Combes D. 2005; Production of fructo-oligosaccharides by levansucrase from Bacillus subtilis C4. Proc Biochem 32:237–243
    [Google Scholar]
  11. Gross M, Geier G, Rudolph K, Geider K. 1992; Levan and levansucrase synthesized by the fireblight pathogen Erwinia amylovora . Physiol Mol Plant Pathol 40:371–381 [CrossRef]
    [Google Scholar]
  12. Hernández L, Arrieta J, Menéndez C, Vazquez R, Coego A, Suarez V, Selman G, Petit-Glatron M. F, Chambert R. 1995; Isolation and enzymic properties of levansucrase secreted by Acetobacter diazotrophicus SRT4, a bacterium associated with sugar cane. Biochem J 309:113–118
    [Google Scholar]
  13. Hestrin S, Feingold D. S, Avigad G. 1956; The mechanism of polysaccharide production from sucrose. Biochem J 64:340–351
    [Google Scholar]
  14. Heyer A. G, Schroeer B, Radosta S, Wolff D, Czapla S, Springer J. 1998; Structure of the enzymatically synthesized fructan inulin. Carbohydr Res 313:165–174 [CrossRef]
    [Google Scholar]
  15. Korakli M, Rossmann A, Ganzle M. G, Vogel R. F. 2001; Sucrose metabolism and exopolysaccharide production in wheat and rye sourdoughs by Lactobacillus sanfranciscensis . J Agric Food Chem 49:5194–5200 [CrossRef]
    [Google Scholar]
  16. Korakli M, Pavlovic M, Ganzle M. G, Vogel R. F. 2003; Exopolysaccharide and kestose production by Lactobacillus sanfranciscensis LTH2590. Appl Environ Microbiol 69:2073–2079 [CrossRef]
    [Google Scholar]
  17. Martinez-Fleites C, Ortiz-Lombardia M, Pons T, Tarbouriech N, Taylor E. J, Arrieta J. G, Hernandez L, Davies G. J. 2005; Crystal structure of levansucrase from the Gram-negative bacterium Gluconacetobacter diazotrophicus . Biochem J 390:19–27 [CrossRef]
    [Google Scholar]
  18. Meng G, Futterer K. 2003; Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nat Struct Biol 10:935–941 [CrossRef]
    [Google Scholar]
  19. Menne E, Guggenbuhl N, Roberfroid M. 2000; Fn-type chicory inulin hydrolysate has a prebiotic effect in humans. J Nutr 130:1197–1199
    [Google Scholar]
  20. Mirza O, Skov L. K, Remaud-Simeon M, Albenne C, Monsan P, Gajhede M, Potocki de Montalk M. 2001; Crystal structures of amylosucrase from Neisseria polysaccharea in complex with d-glucose and the active site mutant Glu328Gln in complex with the natural substrate sucrose. Biochemistry 40:9032–9039 [CrossRef]
    [Google Scholar]
  21. Olivares-Illana V, Wacher-Rodarte C, Le Borgne S, López-Munguía A. 2002; Characterization of a cell-associated inulosucrase from a novel source: a Leuconostoc citreum strain isolated from Pozol, a fermented corn beverage from Mayan origin. J Ind Microbiol Biotechnol 28:112–117 [CrossRef]
    [Google Scholar]
  22. Ozimek L. K, Geel-Schutten G. H, Dijkhuizen L, van Hijum S. A, van Koningsveld G. A, van der Maarel M. J. 2004; Site-directed mutagenesis study of the three catalytic residues of the fructosyltransferases of Lactobacillus reuteri 121. FEBS Lett 560:131–133 [CrossRef]
    [Google Scholar]
  23. Ozimek L. K, Euverink G. J, Dijkhuizen L, van der Maarel M. J. 2005; Mutational analysis of the role of calcium ions in the Lactobacillus reuteri strain 121 fructosyltransferase (levansucrase and inulosucrase) enzymes. FEBS Lett 579:1124–1128 [CrossRef]
    [Google Scholar]
  24. Rosell K. G, Birkhed D. 1974; An inulin-like fructan produced by Streptococcus mutans strain JC2. Acta Chem Scand B28:589
    [Google Scholar]
  25. Rozen R, Bachrach G, Bronshteyn M, Gedalia I, Steinberg D. 2001; The role of fructans on dental biofilm formation by Streptococcus sobrinus , Streptococcus mutans , Streptococcus gordonii and Actinomyces viscosus . FEMS Microbiol Lett 195:205–210 [CrossRef]
    [Google Scholar]
  26. Sambrook J, Fritsch E. F, Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Song D. D, Jacques N. A. 1999; Purification and enzymic properties of the fructosyltransferase of Streptococcus salivarius ATCC 25975. Biochem J 341:285–291 [CrossRef]
    [Google Scholar]
  28. Steinmetz M, Le Coq D, Aymerich S, Gonzy-Treboul G, Gay P. 1985; The DNA sequence of the gene for the secreted Bacillus subtilis enzyme levansucrase and its genetic control sites. Mol Gen Genet 200:220–228 [CrossRef]
    [Google Scholar]
  29. Támbara Y, Hormaza J. V, Pérez C, León A, Arrieta J, Hernández L. 1999; Structural analysis and optimised production of fructo-oligosaccharides by levansucrase from Acetobacter diazotrophicus SRT4. Biotechnol Lett117–121
    [Google Scholar]
  30. Tanaka T, Yamamoto S, Oi S, Yamamoto T. 1981; Structures of heterooligosaccharides synthesized by levansucrase. J Biochem 90:521–526
    [Google Scholar]
  31. Tieking M, Kuhnl W, Ganzle M. G. 2005; Evidence for formation of heterooligosaccharides by Lactobacillus sanfranciscensis during growth in wheat sourdough. J Agric Food Chem 53:2456–2461 [CrossRef]
    [Google Scholar]
  32. Trujillo L. E, Gomez R, Banguela A, Soto M, Arrieta J. G, Hernández L. 2004; Catalytical properties of N -glycosylated Gluconacetobacter diazotrophicus levansucrase produced in yeast. Electron J Biotechnol 7:116–123
    [Google Scholar]
  33. Valeur N, Engel P, Carbajal N, Connolly E, Ladefoged K. 2004; Colonization and immunomodulation by Lactobacillus reuteri ATCC 55730 in the human gastrointestinal tract. Appl Environ Microbiol 70:1176–1181 [CrossRef]
    [Google Scholar]
  34. van Hijum S. A, Bonting K, Dijkhuizen L, van der Maarel M. J. 2001; Purification of a novel fructosyltransferase from Lactobacillus reuteri strain 121 and characterization of the levan produced. FEMS Microbiol Lett 205:323–328 [CrossRef]
    [Google Scholar]
  35. van Hijum S. A, van Geel-Schutten G. H, Rahaoui H, Dijkhuizen L, van der Maarel M. J. 2002; Characterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides. Appl Environ Microbiol 68:4390–4398 [CrossRef]
    [Google Scholar]
  36. van Hijum S. A, van der Maarel M. J., Dijkhuizen L. 2003; Kinetic properties of an inulosucrase from Lactobacillus reuteri 121. FEBS Lett 534:207–210 [CrossRef]
    [Google Scholar]
  37. van Hijum S. A, Szalowska E, Dijkhuizen L, van der Maarel M. J. 2004; Biochemical and molecular characterization of a levansucrase from Lactobacillus reuteri . Microbiology 150:621–630 [CrossRef]
    [Google Scholar]
  38. van Loo J, Coussement P, Hoebregs H, Smits G, de Leenheer L. 1995; On the presence of inulin and oligofructose as natural ingredients in the western diet. Crit Rev Food Sci Nutr 35:525–552 [CrossRef]
    [Google Scholar]
  39. Yanase H, Maeda M, Hagiwara E, Yagi H, Taniguchi K, Okamoto K. 2002; Identification of functionally important amino acid residues in Zymomonas mobilis levansucrase. J Biochem 132:565–572 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28484-0
Loading
/content/journal/micro/10.1099/mic.0.28484-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error