1887

Abstract

Regulation of methionine biosynthesis in involves a complex of the MetJ aporepressor protein and -adenosylmethionine (SAM) repressing expression of most genes in the regulon. To test the role of SAM in the regulation of genes directly, SAM pools were depleted by the expression of the cloned plasmid vector-based coliphage T3 SAM hydrolase (SAMase) gene. Cultures with SAMase activity were assayed for expression of the , , , , , , , and genes in cells grown in methionine-rich complete media as well as in defined media with and without -methionine. SAMase activity dramatically induced expression between 11- and nearly 1000-fold depending on the gene assayed for all but and , and these genes were induced over twofold.  : : Tn (aporepressor defective) and  : : Tn (SAM synthetase impaired; produces <5 % of wild-type SAM) strains containing SAMase activity produced even higher gene activity than that seen in comparably prepared cells with wild-type genes for all but in a MetJ-deficient background. The SAMase-mediated hyperinduction of in wild-type cells and of the genes assayed in  : : Tn and  : : Tn cells provokes questions about how other elements such as the MetR activator protein or factors beyond the regulon itself might be involved in the regulation of genes responsible for methionine biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28489-0
2006-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/5/1451.html?itemId=/content/journal/micro/10.1099/mic.0.28489-0&mimeType=html&fmt=ahah

References

  1. Alix J.-H. 1982; Molecular aspects of the in vivo and in vitro effects of ethionine, an analog of methionine. Microbiol Rev 46:281–295
    [Google Scholar]
  2. Belfaiza J., Parsot C., Martel A., Margarita D., Cohen G. N., Saint-Girons I, de la Tour C. B. 1986; Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region. Proc Natl Acad Sci U S A 83:867–871 [CrossRef]
    [Google Scholar]
  3. Biran D., Brot N., Weissbach H., Ron E. Z. 1995; Heat shock-dependent transcriptional activation of the metA gene of Escherichia coli . J Bacteriol 177:1374–1379
    [Google Scholar]
  4. Biran D., Brot N., Weissbach H., Ron E. Z. 2000; Control of methionine biosynthesis in Escherichia coli by proteolysis. Mol Microbiol 37:1436–1443 [CrossRef]
    [Google Scholar]
  5. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. 1977; Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–112 [CrossRef]
    [Google Scholar]
  6. Byerly K. A., Urbanowski M. L., Stauffer G. V. 1990; Escherichia coli metR mutants that produce a MetR activator protein with an altered homocysteine response. J Bacteriol 172:2839–2843
    [Google Scholar]
  7. Cowen J. M., Urbanowski M. L., Talmi M., Stauffer G. V. 1993; Regulation of the Salmonella typhimurium metF gene by the MetR protein. J Bacteriol 175:5862–5866
    [Google Scholar]
  8. Flavin M. 1962; Microbial transsulfuration: the mechanism of an enzymatic disulfide elimination reaction. J Biol Chem 237:768–777
    [Google Scholar]
  9. Greene R. C. others 1996; Biosynthesis of methionine. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd edn. pp 542–560 Edited by Neidhardt F. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. Greene R. C., Su C.-H., Holloway C. T. 1970; S -adenosylmethionine synthetase deficient mutants of Escherichia coli K-12 with impaired control of methionine biosynthesis. Biochem Biophys Res Comm 38:1120–1126 [CrossRef]
    [Google Scholar]
  11. Greene R. C., Hunter J. S. V., Coch E. H. 1973; Properties of metK mutants of Escherichia coli K-12. J Bacteriol 115:57–67
    [Google Scholar]
  12. Hafner E. W., Tabor C. W., Tabor H. 1977; Isolation of a metK mutant with a temperature-sensitive S -adenosylmethionine synthetase. J Bacteriol 132:832–840
    [Google Scholar]
  13. Hobson A. C., Smith D. A. 1973; S -adenosylmethionine synthetase in methionine regulatory mutants of Salmonella typhimurium . Mol Gen Genet 126:7–18 [CrossRef]
    [Google Scholar]
  14. Holloway C. T., Greene R. T., Su C. H. 1970; Regulation of S -adenosylmethionine synthetase in Escherichia coli . J Bacteriol 104:734–747
    [Google Scholar]
  15. Hughes J. A., Brown L. R., Ferro A. J. 1987; Expression of the cloned coliphage T3 S -adenosylmethionine hydrolase gene inhibits DNA methylation and polymamine biosynthesis in Escherichia coli . J Bacteriol 169:3625–3632
    [Google Scholar]
  16. Kaplan M. M., Flavin M. 1966; Cystathionine γ -synthetase of Salmonella . Catalytic properties of a new enzyme in bacterial methionine biosynthesis. J Biol Chem 241:4463–4471
    [Google Scholar]
  17. Macintyre G., Atwood C. V., Cupples C. G. 2001; Lowering S -adenosylmethionine levels in Escherichia coli modulates C-to-T transition mutations. J Bacteriol 183:921–927 [CrossRef]
    [Google Scholar]
  18. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Mares R., Urbanowski M. L., Stauffer G. V. 1992; Regulation of the Salmonella typhimurium metA gene by the MetR protein and homocysteine. J Bacteriol 174:390–397
    [Google Scholar]
  20. Miller J. H. 1972 Experiments in Molecular Genetics pp 352–355 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Mulligan J. T., Margolin W., Krueger J. H., Walker G. C. 1982; Mutations affecting regulation of methionine biosynthetic genes isolated by use of met-lac fusions. J Bacteriol 151:609–619
    [Google Scholar]
  22. Murphy McDaniel B. A., Grundy F. J., Artsimovitch I., Henkin T. M. 2003; Transcription termination control of the S box system: direct measurement of S -adenosylmethionine by the leader RNA. Proc Natl Acad Sci U S A 100:3083–3088 [CrossRef]
    [Google Scholar]
  23. Newman E. B., Budman L. I., Chan E. C., Greene R. C., Lin R. T., Woldringh C. L., D'Ari R. 1998; Lack of S -adenosylmethionine results in a cell division defect in Escherichia coli . J Bacteriol 180:3614–3619
    [Google Scholar]
  24. Palmer B. R., Marinus M. G. 1995; The dam and dcm strains of Escherichia coli : a review. Gene 143:1–12
    [Google Scholar]
  25. Pine M. J. 1978; Comparative physiological effects of incorporated amino acid analogs in Escherichia coli . Antimicrob Agents Chemother 13:676–685 [CrossRef]
    [Google Scholar]
  26. Plamann L. S., Urbanowski M. L., Stauffer G. V. 1988; Salmonella typhimurium metE operator-constitutive mutations. Gene 73:201–208 [CrossRef]
    [Google Scholar]
  27. Plumbridge J. 1987; The role of dam methylation in controlling gene expression. Biochemie 69:439–443 [CrossRef]
    [Google Scholar]
  28. Posnick L. M., Samson L. D. 1999; Influence of S -adenosylmethionine pool size on spontaneous mutation, Dam methylation, and cell growth of Escherichia coli . J Bacteriol 181:6756–6762
    [Google Scholar]
  29. Rafferty J. B., Somers W. S., Saint-Girons I., Phillips S. E. V. 1989; Three-dimensional crystal structures of Escherichia coli met repressor with and without co-repressor. Nature 341:705–710 [CrossRef]
    [Google Scholar]
  30. Shoeman R., Redfield B., Coleman T., Greene R., Smith A., Saint-Girons I., Brot N., Weissbach H. 1985; Regulation of methionine synthesis in Escherichia coli : effect of metJ gene product and S -adenosylmethionine on the in vitro expression of the metB , metL , and metJ genes. Biochem Biophys Res Commun 133:731–739 [CrossRef]
    [Google Scholar]
  31. Stauffer G. V., Stauffer L. T. 1988; Salmonella typhimurium LT2 metF operator mutations. Mol Gen Genet 212:32–36
    [Google Scholar]
  32. Su C. H., Greene R. C. 1971; Regulation of methionine biosynthesis in Escherichia coli : mapping of the metJ locus and properties of a metJ +- metJ merodiploid. Proc Natl Acad Sci U S A 68:367–371 [CrossRef]
    [Google Scholar]
  33. Urbanowski M. L., Stauffer G. V. 1986; Autoregulation by tandem promoters of the Salmonella typhimurium LT2 metJ gene. J Bacteriol 165:740–745
    [Google Scholar]
  34. Urbanowski M. L., Stauffer G. V. 1987; Regulation of the metR gene of Salmonella typhimurium . J Bacteriol 169:5841–5844
    [Google Scholar]
  35. Urbanowski M. L., Stauffer G. V. 1989a; Role of homocysteine in metR -mediated activation of the metE and metH genes in Salmonella typhimurium and Escherichia coli . J Bacteriol 171:3277–3281
    [Google Scholar]
  36. Urbanowski M. L., Stauffer G. V. 1989b; The control region of the metH gene of Salmonella typhimurium LT2: an atypical met promoter. Gene 73:193–200
    [Google Scholar]
  37. Urbanowski M. L., Stauffer L. T., Plamann S., Stauffer G. V. 1987; A new methionine locus, metR , that encodes a trans-acting protein required for activation of metE and metH in Escherichia coli and Salmonella typhimurium . J Bacteriol 169:1391–1397
    [Google Scholar]
  38. Usuda Y., Kurahashi O. 2005; Effects of deregulation of methionine biosynthesis on methionine excretion in Escherichia coli . Appl Environ Microbiol 71:3228–3234 [CrossRef]
    [Google Scholar]
  39. Val D. L., Cronan J. E. 1998; In vivo evidence that S -adenosylmethionine and fatty acid synthesis intermediates are the substrates for the LuxI family of autoinducer synthases. J Bacteriol 180:2644–2651
    [Google Scholar]
  40. Yanisch-Perron C., Vieira C. J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28489-0
Loading
/content/journal/micro/10.1099/mic.0.28489-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error