1887

Abstract

has been previously grouped into three evolutionary groups, termed lineages I, II and III. While lineages I and II are commonly isolated from various sources, lineage III isolates are rare and have several atypical and unique phenotypic characteristics. Relative to their prevalence in other sources, lineage III strains are overrepresented among isolates from food-production animals, and underrepresented among isolates from human clinical cases and foods. This work describes an extensive genotypic and phenotypic characterization of 46 lineage III isolates. Phylogenetic analyses of partial and sequences showed that lineage III represents three distinct subgroups, which were termed IIIA, IIIB and IIIC. Each of these lineage III subgroups is characterized by differentiating genotypic and phenotypic characteristics. Unlike typical , all subgroup IIIB and IIIC isolates lack the ability to ferment rhamnose. While all IIIC and most IIIB isolates carry the putative virulence gene , the majority of subgroup IIIA isolates lack this gene. All three lineage III subgroups contain isolates from human clinical cases as well as isolates that are cytopathogenic in a cell culture plaque assay, indicating that lineage III isolates have the potential to cause human disease. The identification of specific genotypic and phenotypic characteristics among the three lineage III subgroups suggests that these subgroups may occupy different ecological niches and, therefore, may be transmitted by different pathways.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28503-0
2006-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/3/685.html?itemId=/content/journal/micro/10.1099/mic.0.28503-0&mimeType=html&fmt=ahah

References

  1. Atlas R. M. 1993 Handbook of Microbiological Media Boca Raton: CRC Press;
    [Google Scholar]
  2. Becker L. A, Cetin M. S, Hutkins R. W, Benson A. K. 1998; Identification of the gene encoding the alternative sigma factor sigmaB from Listeria monocytogenes and its role in osmotolerance. J Bacteriol 180:4547–4554
    [Google Scholar]
  3. Bille J, Catimel B, Bannerman E, Jacquet C, Yersin M. N, Caniaux I, Monget D, Rocourt J. 1992; API Listeria , a new and promising one-day system to identify Listeria isolates. Appl Environ Microbiol 58:1857–1860
    [Google Scholar]
  4. Brosch R, Chen J, Luchansky J. B. 1994; Pulsed-field fingerprinting of Listeriae : identification of genomic divisions for Listeria monocytogenes and their correlation with serovar. Appl Environ Microbiol 60:2584–2592
    [Google Scholar]
  5. Bruce J. L, Hubner R. J, Cole E. M, McDowell C. I, Webster J. A. 1995; Sets of Eco RI fragments containing ribosomal RNA sequences are conserved among different strains of Listeria monocytogenes . Proc Natl Acad Sci U S A 92:5229–5233 [CrossRef]
    [Google Scholar]
  6. Cai S, Kabuki D. Y, Kuaye A. Y, Cargioli T. G, Chung M. S, Nielsen R, Wiedmann M. 2002; Rational design of DNA sequence-based strategies for subtyping Listeria monocytogenes . J Clin Microbiol 40:3319–3325 [CrossRef]
    [Google Scholar]
  7. Chakraborty T, Ebel F, Wehland J, Dufrenne J, Notermans S. 1994; Naturally occurring virulence-attenuated isolates of Listeria monocytogenes capable of inducing long term protection against infection by virulent strains of homologous and heterologous serotypes. FEMS Immunol Med Microbiol 10:1–9 [CrossRef]
    [Google Scholar]
  8. De Jesus A. J, Whiting R. C. 2003; Thermal inactivation, growth, and survival studies of Listeria monocytogenes strains belonging to three distinct genotypic lineages. J Food Prot 66:1611–1617
    [Google Scholar]
  9. Djordjevic D, Wiedmann M, McLandsborough L. A. 2002; Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol 68:2950–2958 [CrossRef]
    [Google Scholar]
  10. Doumith M, Cazalet C, Simoes N. 7 other authors 2004; New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect Immun 72:1072–1083 [CrossRef]
    [Google Scholar]
  11. Graves L. M, Swaminathan B, Reeves M. W, Hunter S. B, Weaver R. E, Plikaytis B. D, Schuchat A. 1994; Comparison of ribotyping and multilocus enzyme electrophoresis for subtyping of Listeria monocytogenes isolates. J Clin Microbiol 32:2936–2943
    [Google Scholar]
  12. Gray M. J, Zadoks R. N, Fortes E. D. 7 other authors 2004; Listeria monocytogenes isolates from foods and humans form distinct but overlapping populations. Appl Environ Microbiol 70:5833–5841 [CrossRef]
    [Google Scholar]
  13. Jeffers G. T. 1998; Strain differentiation among Listeria monocytogenes isolates. In Food Science p. 84 Ithaca: Cornell University;
    [Google Scholar]
  14. Jeffers G. T, Bruce J. L, McDonough P. L, Scarlett J, Boor K. J, Wiedmann M. 2001; Comparative genetic characterization of Listeria monocytogenes isolates from human and animal listeriosis cases. Microbiology 147:1095–1104
    [Google Scholar]
  15. Lan R, Reeves P. R. 2001; When does a clone deserve a name? A perspective on bacterial species based on population genetics. Trends Microbiol 9:419–424 [CrossRef]
    [Google Scholar]
  16. Low J. C, Donachie W. 1997; A review of Listeria monocytogenes and listeriosis. Vet J 153:9–29 [CrossRef]
    [Google Scholar]
  17. Mead P. S, Slutsker L, Dietz V, McCaig L. F, Bresee J. S, Shapiro C, Griffin P. M, Tauxe R. V. 1999; Food-related illness and death in the United States. Emerg Infect Dis 5:607–625 [CrossRef]
    [Google Scholar]
  18. Meinersmann R. J, Phillips R. W, Wiedmann M, Berrang M. E. 2004; Multilocus sequence typing of Listeria monocytogenes by use of hypervariable genes reveals clonal and recombination histories of three lineages. Appl Environ Microbiol 70:2193–2203 [CrossRef]
    [Google Scholar]
  19. Moorhead S. M, Dykes G. A, Cursons R. T. 2003; An SNP-based PCR assay to differentiate between Listeria monocytogenes lineages derived from phylogenetic analysis of the sigB gene. J Microbiol Methods 55:425–432 [CrossRef]
    [Google Scholar]
  20. Nadon C. A, Woodward D. L, Young C, Rodgers F. G, Wiedmann M. 2001; Correlations between molecular subtyping and serotyping of Listeria monocytogenes . J Clin Microbiol 39:2704–2707 [CrossRef]
    [Google Scholar]
  21. Nielsen R. 2001; Statistical tests of selective neutrality in the age of genomics. Heredity 86:641–647 [CrossRef]
    [Google Scholar]
  22. Nightingale K. K, Windham K, Wiedmann M. 2005; Evolution and molecular phylogeny of Listeria monocytogenes isolated from human and animal listeriosis cases and foods. J Bacteriol 187:5537–5551 [CrossRef]
    [Google Scholar]
  23. Piffaretti J. C, Kressebuch H, Aeschbacher M, Bille J, Bannerman E, Musser J. M, Selander R. K, Rocourt J. 1989; Genetic characterization of clones of the bacterium Listeria monocytogenes causing epidemic disease. Proc Natl Acad Sci U S A 86:3818–3822 [CrossRef]
    [Google Scholar]
  24. Posada D, Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  25. Rasmussen O. F, Beck T, Olsen J. E, Dons L, Rossen L. 1991; Listeria monocytogenes isolates can be classified into two major types according to the sequence of the listeriolysin gene. Infect Immun 59:3945–3951
    [Google Scholar]
  26. Rasmussen O. F, Skouboe P, Dons L, Rossen L, Olsen J. E. 1995; Listeria monocytogenes exists in at least three evolutionary lines: evidence from flagellin, invasive associated protein and listeriolysin O genes. Microbiology 141:2053–2061 [CrossRef]
    [Google Scholar]
  27. Rozas J, Sanchez-DelBarrio J. C, Messeguer X, Rozas R. 2003; DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497 [CrossRef]
    [Google Scholar]
  28. Sado P. N, Jinneman K. C, Husby G. J, Sorg S. M, Omiecinski C. J. 1998; Identification of Listeria monocytogenes from unpasteurized apple juice using rapid test kits. J Food Prot 61:1199–1202
    [Google Scholar]
  29. Schaferkordt S, Chakraborty T. 1997; Identification, cloning, and characterization of the Ima operon, whose gene products are unique to Listeria monocytogenes . J Bacteriol 179:2707–2716
    [Google Scholar]
  30. Simonsen K. L, Churchill G. A, Aquadro C. F. 1995; Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141:413–429
    [Google Scholar]
  31. Sun A. N, Camilli A, Portnoy D. A. 1990; Isolation of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect Immun 58:3770–3778
    [Google Scholar]
  32. Swofford D. L. 1997 paup* – Phylogenetic Analysis Using Parsimony*, and other methods Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  33. Ward T. J, Gorski L, Borucki M. K, Mandrell R. E, Hutchins J, Pupedis K. 2004; Intraspecific phylogeny and lineage group identification based on the prfA virulence gene cluster of Listeria monocytogenes . J Bacteriol 186:4994–5002 [CrossRef]
    [Google Scholar]
  34. Wiedmann M. 2002a; Molecular subtyping methods for Listeria monocytogenes . J AOAC Int 85:524–531
    [Google Scholar]
  35. Wiedmann M. 2002b; Subtyping of bacterial foodborne pathogens. Nutr Rev 60:201–208 [CrossRef]
    [Google Scholar]
  36. Wiedmann M, Bruce J, Keating C, Johnson A, McDonough P, Batt C. 1997; Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect Immun 65:2707–2716
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28503-0
Loading
/content/journal/micro/10.1099/mic.0.28503-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error