1887

Abstract

Haloarchaea are adapted to high-salt environments and accumulate equally high salt concentrations in the cytoplasm. The genomes of representatives of six haloarchaeal genera have been fully or partially sequenced, allowing the analysis of haloarchaeal properties . Transcriptome and proteome analyses have been established for and . Genetic systems are available including methods that allow the fast in-frame deletion or modification of chromosomal genes. The high-efficiency transformation system of allows the isolation of genes essential for a biological process by complementation of loss-of-function mutants. For the analysis of haloarchaeal biology many molecular genetic, biochemical, structural and cell biological methods have been adapted to application at high salt concentrations. Recently it has become clear that several different mechanisms allow the adaptation of proteins to the high salt concentration of the cytoplasm. Taken together, the wealth of techniques available make haloarchaea excellent archaeal model species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28504-0
2006-03-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/3/585.html?itemId=/content/journal/micro/10.1099/mic.0.28504-0&mimeType=html&fmt=ahah

References

  1. Allers T, Ngo H. P, Mevarech M, Lloyd R. G. 2004; Development of additional selectable markers for the halophilic archaeon Haloferax volcanii based on the leuB and trpA genes. Appl Environ Microbiol 70:943–953 [CrossRef]
    [Google Scholar]
  2. Baliga N. S, Pan M, Goo Y. A. 7 other authors 2002; Coordinate regulation of energy transduction modules in Halobacterium sp. analyzed by a global systems approach. Proc Natl Acad Sci U S A 99:14913–14918 [CrossRef]
    [Google Scholar]
  3. Baliga N. S, Bjork S. J, Bonneau R, Pan M, Iloanusi C, Kottemann M. C, Hood L, DiRuggiero J. 2004a; Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1. Genome Res 14:1025–1035 [CrossRef]
    [Google Scholar]
  4. Baliga N. S, Bonneau R, Facciotti M. T. 12 other authors 2004b; Genome sequence of Haloarcula marismortui : a halophilic archaeon from the Dead Sea. Genome Res 14:2221–2234 [CrossRef]
    [Google Scholar]
  5. Berquist B. R, DasSarma S. 2003; An archaeal chromosomal autonomously replicating sequence element from an extreme halophile, Halobacterium sp. strain NRC-1. J Bacteriol 185:5959–5966 [CrossRef]
    [Google Scholar]
  6. Bidle K. A. 2003; Differential expression of genes influenced by changing salinity using RNA arbitrarily primed PCR in the archaeal halophile Haloferax volcanii . Extremophiles 7:1–7
    [Google Scholar]
  7. Bitan-Banin G, Ortenberg R, Mevarech M. 2003; Development of a gene knockout system for the halophilic archaeon Haloferax volcanii by use of the pyrE gene. J Bacteriol 185:772–778 [CrossRef]
    [Google Scholar]
  8. Bonneau R, Baliga N. S, Deutsch E. W, Shannon P, Hood L. 2004; Comprehensive de novo structure prediction in a systems-biology context for the archaea Halobacterium sp. NRC-1. Genome Biol 5:R52 [CrossRef]
    [Google Scholar]
  9. Choi J, Joo W. A, Park S. J, Lee S. H, Kim C. W. 2005; An efficient proteomics based strategy for the functional characterization of a novel halophilic enzyme from Halobacterium salinarum . Proteomics 5:907–917 [CrossRef]
    [Google Scholar]
  10. Ebel C, Costenaro L, Pascu M, Faou P, Kernel B, Proust-De Martin F, Zaccai G. 2002; Solvent interactions of halophilic malate dehydrogenase. Biochemistry 41:13234–13244 [CrossRef]
    [Google Scholar]
  11. Goo Y. A, Roach J, Glusman G. 7 other authors 2004; Low-pass sequencing for microbial comparative genomics. BMC Genomics 5:3 [CrossRef]
    [Google Scholar]
  12. Gordeliy V. I, Labahn J, Moukhametzianov R. 8 other authors 2002; Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419:484–487 [CrossRef]
    [Google Scholar]
  13. Gregor D, Pfeifer F. 2005; In vivo analyses of constitutive and regulated promoters in halophilic archaea. Microbiology 151:25–33 [CrossRef]
    [Google Scholar]
  14. Irihimovitch V, Ring G, Elkayam T, Konrad Z, Eichler J. 2003; Isolation of fusion proteins containing SecY and SecE, components of the protein translocation complex from the halophilic archaeon Haloferax volcanii . Extremophiles 7:71–77
    [Google Scholar]
  15. Jäger A, Samorski R, Pfeifer F, Klug G. 2002; Individual gvp transcript segments in Haloferax mediterranei exhibit varying half-lives, which are differentially affected by salt concentration and growth phase. Nucleic Acids Res 30:5436–5443 [CrossRef]
    [Google Scholar]
  16. Karadzic I. M, Maupin-Furlow J. A. 2005; Improvement of two-dimensional gel electrophoresis proteome maps of the haloarchaeon Haloferax volcanii . Proteomics 5:354–359 [CrossRef]
    [Google Scholar]
  17. Klein C, Garcia-Rizo C, Bisle B, Scheffer B, Zischka H, Pfeiffer F, Siedler F, Oesterhelt D. 2005; The membrane proteome of Halobacterium salinarum . Proteomics 5:180–197 [CrossRef]
    [Google Scholar]
  18. Levin I, Giladi M, Altman-Price N, Ortenberg R, Mevarech M. 2004; An alternative pathway for reduced folate biosynthesis in bacteria and halophilic archaea. Mol Microbiol 54:1307–1318 [CrossRef]
    [Google Scholar]
  19. Lopalco P, Lobasso S, Babudri F, Corcelli A. 2004; Osmotic shock stimulates de novo synthesis of two cardiolipins in an extreme halophilic archaeon. J Lipid Res 45:194–201
    [Google Scholar]
  20. Lundgren M, Andersson A, Chen L, Nilsson P, Bernander R. 2004; Three replication origins in Sulfolobus species: synchronous initiation of chromosome replication and asynchronous termination. Proc Natl Acad Sci U S A 101:7046–7051 [CrossRef]
    [Google Scholar]
  21. Marg B. L, Schweimer K, Sticht H, Oesterhelt D. 2005; A two-alpha-helix extra domain mediates the halophilic character of a plant-type ferredoxin from halophilic archaea. Biochemistry 44:29–39 [CrossRef]
    [Google Scholar]
  22. McCready S, Müller J. A, Boubriak I, Berquist B. R, Ng W. L, DasSarma S. 2005; UV irradiation induces homologous recombination genes in the model archaeon, Halobacterium sp . NRC-I. Saline Systems 1:3 [CrossRef]
    [Google Scholar]
  23. Müller J. A, DasSarma S. 2005; Genomic analysis of anaerobic respiration in the archaeon Halobacterium sp. strain NRC-1: dimethyl sulfoxide and trimethylamine N -oxide as terminal electron acceptors. J Bacteriol 187:1659–1667 [CrossRef]
    [Google Scholar]
  24. Ng W. V, Kennedy S. P, Mahairas G. G. 40 other authors 2000; Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci U S A 97:12176–12181 [CrossRef]
    [Google Scholar]
  25. Peck R. F, DasSarma S, Krebs M. P. 2000; Homologous gene knockout in the archaeon Halobacterium salinarum with ura3 as a couterselectable marker. Mol Microbiol 35:667–676
    [Google Scholar]
  26. Reuter C. J, Maupin-Furlow J. A. 2004; Analysis of proteasome-dependent proteolysis in Haloferax volcanii cells, using short-lived green fluorescent proteins. Appl Environ Microbiol 70:7530–7538 [CrossRef]
    [Google Scholar]
  27. Sartorius-Neef S, Pfeifer F. 2004; In vivo studies on putative Shine-Dalgarno sequences of the halophilic archaeon Halobacterium salinarum . Mol Microbiol 51:579–588 [CrossRef]
    [Google Scholar]
  28. Schobert B, Brown L. S, Lanyi J. K. 2003; Crystallographic structures of the M and N intermediates of bacteriorhodopsin: assembly of a hydrogen-bonded chain of water molecules between Asp-96 and the retinal Schiff base. J Mol Biol 330:553–570 [CrossRef]
    [Google Scholar]
  29. Shmuely H, Dinitz E, Dahan I, Eichler J, Fischer D, Shaanan B. 2004; Poorly conserved ORFs in the genome of the archaea Halobacterium sp. NRC-1 correspond to expressed proteins. Bioinformatics 20:1248–1253 [CrossRef]
    [Google Scholar]
  30. Soppa J. 2005; From replication to cultivation: hot news from haloarchaea. Curr Opin Microbiol 8:737–744 [CrossRef]
    [Google Scholar]
  31. Soppa J, Link T. A. 1997; The TATA-box-binding protein (TBP) of Halobacterium salinarum . Cloning of the tbp gene, heterologous production of TBP and folding of TBP into a native conformation. Eur J Biochem 249:318–324 [CrossRef]
    [Google Scholar]
  32. Tebbe A, Klein C, Bisle B. & 7 other authors; 2005; Analysis of the cytosolic proteome of Halobacterium salinarum and its implication for genome annotation. Proteomics 5:168–179 [CrossRef]
    [Google Scholar]
  33. Tu D, Blaha G, Moore P. B, Steitz T. A. 2005; Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121:257–270 [CrossRef]
    [Google Scholar]
  34. Wang G, Kennedy S. P, Fasiludeen S, Rensing C, DasSarma S. 2004; Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J Bacteriol 186:3187–3194 [CrossRef]
    [Google Scholar]
  35. Wanner C, Soppa J. 1999; Genetic identification of three ABC transporters as essential elements for nitrate respiration in Haloferax volcanii . Genetics 152:1417–1428
    [Google Scholar]
  36. Wanner C, Soppa J. 2002; Functional role for a 2-oxo acid dehydrogenase in the halophilic archaeon Haloferax volcanii . J Bacteriol 184:3114–3121 [CrossRef]
    [Google Scholar]
  37. Wright D. B, Banks D. D, Lohman J. R, Hilsenbeck J. L, Gloss L. M. 2002; The effect of salts on the activity and stability of Escherichia coli and Haloferax volcanii dihydrofolate reductases. J Mol Biol 323:327–344 [CrossRef]
    [Google Scholar]
  38. Zaigler A, Schuster S. C, Soppa J. 2003; Construction and usage of a onefold-coverage shotgun DNA microarray to characterize the metabolism of the archaeon Haloferax volcanii . Mol Microbiol 48:1089–1105 [CrossRef]
    [Google Scholar]
  39. Zeth K, Offermann S, Essen L. O, Oesterhelt D. 2004; Iron-oxo clusters biomineralizing on protein surfaces: structural analysis of Halobacterium salinarum DpsA in its low- and high-iron states. Proc Natl Acad Sci U S A 101:13780–13785 [CrossRef]
    [Google Scholar]
  40. Zhang R, Zhang C. T. 2003; Multiple replication origins of the archaeon Halobacterium species NRC-1. Biochem Biophys Res Commun 302:728–734 [CrossRef]
    [Google Scholar]
  41. Zhang R, Zhang C. T. 2005; Identification of replication origins in archaeal genomes based on the Z-curve method. Archaea 1:335–346 [CrossRef]
    [Google Scholar]
  42. Zimmermann P, Pfeifer F. 2003; Regulation of the expression of gas vesicle genes in Haloferax mediterranei : interaction of the two regulatory proteins GvpD and GvpE. Mol Microbiol 49:783–794
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28504-0
Loading
/content/journal/micro/10.1099/mic.0.28504-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error