1887

Abstract

This article has been retracted - read the retraction notice here: https://doi.org/10.1099/mic.0.000110
A cluster of genes encoded by ORFs Rv0014c–Rv0018c in encodes candidate cell division proteins RodA and PBPA, a pair of serine/threonine kinases (STPKs), PknA and PknB, and a phosphatase, PstP. The organization of genes encompassing this region is conserved in a large number of mycobacterial species. This study demonstrates that recombinant PBPA of binds benzylpenicillin. Knockout of its counterpart in resulted in hindered growth and defective cell septation. The phenotype of the knockout (PBPA-KO) could be restored to that of the wild-type upon expression of PBPA of . PBPA localized to the division site along with newly synthesized peptidoglycan, between segregated nucleoids. coexpression of PBPA and PknB, kinase assays and site-specific mutagenesis substantiated the view that PknB phosphorylates PBPA on T362 and T437. A T437A mutant could not complement PBPA-KO. These studies demonstrate for the first time that PBPA, which belongs to a subclass of class B high-molecular-mass PBPs, plays an important role in cell division and cell shape maintenance. Signal transduction mediated by PknB and PstP likely regulates the positioning of this PBP at the septum, thereby regulating septal peptidoglycan biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28630-0
2006-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/2/493.html?itemId=/content/journal/micro/10.1099/mic.0.28630-0&mimeType=html&fmt=ahah

References

  1. Alaedini A, Day R. A. 1999; Identification of two penicillin-binding multienzyme complexes in Haemophilus influenzae . Biochem Biophys Res Commun 264:191–195 [CrossRef]
    [Google Scholar]
  2. Av-Gay Y, Everett M. 2000; The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis . Trends Microbiol 8:238–244 [CrossRef]
    [Google Scholar]
  3. Av-Gay Y, Jamil S, Drews S. J. 1999; Expression and characterization of the Mycobacterium tuberculosis serine/threonine protein kinase PknB. Infect Immun 67:5676–5682
    [Google Scholar]
  4. Betts J. C, Lukey P. T, Robb L. C, McAdam R. A, Duncan K. 2002; Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43:717–731 [CrossRef]
    [Google Scholar]
  5. Blom N, Gammeltoft S, Brunak S. 1999; Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362 [CrossRef]
    [Google Scholar]
  6. Boitel B, Ortiz-Lombardia M, Duran R, Pompeo F, Cole S. T, Cervenansky C, Alzari P. M. 2003; PknB kinase activity is regulated by phosphorylation in two Thr residues and dephosphorylation by PstP, the cognate phospho-Ser/Thr phosphatase, in Mycobacterium tuberculosis . Mol Microbiol 49:1493–1508 [CrossRef]
    [Google Scholar]
  7. Chaba R, Raje M, Chakraborty P. K. 2002; Evidence that a eukaryotic-type serine/threonine protein kinase from Mycobacterium tuberculosis regulates morphological changes associated with cell division. Eur J Biochem 269:1078–1085 [CrossRef]
    [Google Scholar]
  8. Chopra P, Singh B, Singh R. 8 other authors 2003; Phosphoprotein phosphatase of Mycobacterium tuberculosis dephosphorylates serine-threonine kinases PknA and PknB. Biochem Biophys Res Commun 311:112–120 [CrossRef]
    [Google Scholar]
  9. Choudhuri B. S, Bhakta S, Barik R, Basu J, Kundu M, Chakrabarti P. 2002; Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis . Biochem J 367:279–285 [CrossRef]
    [Google Scholar]
  10. Cole S. T, Brosch R, Parkhill J. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  11. Cowley S, Ko M, Pick N. 8 other authors 2004; The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo. Mol Microbiol 52:1691–1702 [CrossRef]
    [Google Scholar]
  12. Den Blaauwen T, Aarsman M. E, Vischer N. O, Nanninga N. 2003; Penicillin-binding protein PBP2 of Escherichia coli localizes preferentially in the lateral wall and at mid-cell in comparison with the old cell pole. Mol Microbiol 47:539–547 [CrossRef]
    [Google Scholar]
  13. Duncan L, Losick R. 1993; SpoIIAB is an anti- σ factor that binds to and inhibits transcription by regulatory protein σ [sup]F[/sup] from Bacillus subtili s. Proc Natl Acad Sci U S A 90:2325–2329 [CrossRef]
    [Google Scholar]
  14. Duncan L, Alper S, Arigoni F, Losick R, Stragier P. 1995; Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division. Science 270:641–644 [CrossRef]
    [Google Scholar]
  15. Duncan L, Alper S, Losick R. 1996; SpoIIAA governs the release of cell-type specific transcription by a serine phosphatase at the site of asymmetric division. J Mol Biol 260:147–164 [CrossRef]
    [Google Scholar]
  16. Duran R, Villarino A, Bellinzoni M, Wehenkel A, Fernandez P, Boitel B, Cole S. T, Alzari P. M, Cervenansky C. 2005; Conserved autophosphorylation pattern in activation loops and juxtamembrane regions of Mycobacterium tuberculosis Ser/Thr protein kinases. Biochem Biophys Res Commun 333:858–867 [CrossRef]
    [Google Scholar]
  17. Durocher D, Jackson S. P. 2002; The FHA domain. FEBS Lett 513:58–66 [CrossRef]
    [Google Scholar]
  18. Durocher D, Taylor I. A, Sarbassova D, Haire L. F, Jackson S. P. 2000; The molecular basis of FHA domain : phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Mol Cell 6:1169–1182 [CrossRef]
    [Google Scholar]
  19. Fsihi H, Salazar L, de Rossi E. 7 other authors 1996; Gene arrangement and organization in an approximately 76 kb fragment encompassing the oriC region of the chromosome of Mycobacterium leprae . Microbiology 142:3147–3161 [CrossRef]
    [Google Scholar]
  20. Gaora P, Bernini S, Hayward C, Filley E, Rook G, Young D, Thole J. 1997; Mycobacteria as immunogens: development of expression vectors for use in multiple mycobacterial species. Med Princ Pract 6:91–96
    [Google Scholar]
  21. Goffin C, Ghuysen J. M. 1998; Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 62:1079–1093
    [Google Scholar]
  22. Goffin C, Ghuysen J. M. 2002; Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. Microbiol Mol Biol Rev 66:702–738 [CrossRef]
    [Google Scholar]
  23. Granier B, Jamin M, Adam M. 15 other authors 1994; Serine-type d-ala-d-Ala peptidases and penicillin-binding proteins. Methods Enzymol 244:249–266
    [Google Scholar]
  24. Harry E, Pogliano K, Losick R. 1995; Use of immunofluorescence to visualize cell-specific gene expression during sporulation in Bacillus subtilis . J Bacteriol 177:3386–3393
    [Google Scholar]
  25. Höltje J. V. 1998; Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli . Microbiol Mol Biol Rev 62:181–203
    [Google Scholar]
  26. Jacobs C, Domian I. J, Maddock J. R, Shapiro L. 1999; Cell cycle-dependent polar localization of an essential bacterial histidine kinase that controls DNA replication and cell division. Cell 97:111–120 [CrossRef]
    [Google Scholar]
  27. Kang C.-M, Abbott D. W, Park S. T, Dascher C. C, Cantley C, Husson R. N. 2005; The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev 19:1692–1704 [CrossRef]
    [Google Scholar]
  28. Koul A, Choidas A, Tyagi A. K, Drlica K, Singh Y, Ullrich A. 2001; Serine/threonine protein kinases PknF and PknG of Mycobacterium tuberculosis : characterization and localization. Microbiology 147:2307–2314
    [Google Scholar]
  29. Krebs E. G, Fischer E. H. 1989; The phosphorylase b to a converting enzyme of rabbit skeletal muscle. Biochim Biophys Acta 1000:302–309
    [Google Scholar]
  30. Leonard C. J, Aravind L, Koonin E. V. 1998; Novel families of putative protein kinases in bacteria and archaea: evolution of the “eukaryotic” protein kinase superfamily. Genome Res 8:1038–1047
    [Google Scholar]
  31. Lucet I, Feucht A, Yudkin M. D, Errington J. 2000; Direct interaction between the cell division protein FtsZ and the cell differentiation protein SpoIIE. EMBO J 19:1467–1475 [CrossRef]
    [Google Scholar]
  32. Madec E, Laszkiewic Z. A, Iwanicki A, Obuchowski M, Seror S. 2002; Characterization of a membrane-linked Ser/Thr protein kinase in Bacillus subtilis , implicated in developmental processes. Mol Microbiol 46:571–586 [CrossRef]
    [Google Scholar]
  33. Mahenthiralingam E, Marklund B. I, Brooks L. A, Smith D. A, Bancroft G. J, Stokes R. W. 1998; Site-directed mutagenesis of the 19-kilodalton lipoprotein antigen reveals no essential role for the protein in the growth and virulence of Mycobacterium intracellulare . Infect Immun 66:3626–3634
    [Google Scholar]
  34. Matroule J. Y, Lam H, Burnette D. T, Jacobs-Wagner C. 2004; Cytokinesis monitoring during development: rapid pole-to-pole shuttling of a signaling protein by localized kinase and phosphatase in Caulobacter . Cell 118:579–590 [CrossRef]
    [Google Scholar]
  35. McCarty D. R, Chory J. 2000; Conservation and innovation in plant signaling pathways. Cell 103:201–209 [CrossRef]
    [Google Scholar]
  36. Molle V, Girard-Blanc C, Kremer L, Doublet P, Cozonne A. J, Prost J. F. 2003; Protein PknE, a novel transmembrane eukaryotic-like serine/threonine kinase from Mycobacterium tuberculosis . Biochem Biophys Res Commun 308:820–825 [CrossRef]
    [Google Scholar]
  37. Molle V, Kremer J, Girand-Blanc C, Besra G. S, Cozzone A. J, Prost J. F. 2003; An FHA phosphoprotein recognition domain mediates protein EmbR phosphorylation by PknH, a Ser/Thr protein kinase from Mycobacterium tuberculosis . Biochemistry 42:15300–15309 [CrossRef]
    [Google Scholar]
  38. Molle V, Soulat D, Jault J.-M, Grangeasse C, Cozzone A. J, Prost J.-F. 2004; Two FHA domains on an ABC transporter, Rv1747, mediate its phosphorylation by PknF, a Ser/Thr protein kinase from Mycobacterium tuberculosi s. FEMS Microbiol Lett 234:215–223 [CrossRef]
    [Google Scholar]
  39. Ortiz-Lombardia M, Pompeo F, Boitel B, Alzari P. M. 2003; Crystal structure of the catalytic domain of the PknB serine/threonine kinase from Mycobacterium tuberculosis . J Biol Chem 278:13094–13100 [CrossRef]
    [Google Scholar]
  40. Parish T, Stoker N. G. 2000; Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology 146:1969–1975
    [Google Scholar]
  41. Parish T, Turner J, Stoker N. G. 2001; amiA is a negative regulator of acetamidase expression in Mycobacterium smegmatis . BMC Microbiol 1:19 [CrossRef]
    [Google Scholar]
  42. Peirs P, De Wit L, Braibant M, Huygen K, Content J. 1997; A serine/threonine protein kinase from Mycobacterium tuberculosis . Eur J Biochem 244:604–612 [CrossRef]
    [Google Scholar]
  43. Popham D. L, Young K. D. 2003; Role of penicillin-binding proteins in bacterial cell morphogenesis. Curr Opin Microbiol 6:594–599 [CrossRef]
    [Google Scholar]
  44. Pullen K. E, Ng Ho-L, Sung P.-Y, Good M. C, Smith S. M, Alber T. 2004; An alternate conformation and a third metal in PstP/Ppp, the M. tuberculosis PP2C-family Ser/Thr phosphatase. Structure 12:1947–1954 [CrossRef]
    [Google Scholar]
  45. Salazar L, Fsihi H, Riccardi G, Rios C, Cole S. T, Takiff H. E, de Rossi E. 1996; Organization of the origins of replication of the chromosomes of Mycobacterium smegmatis , Mycobacterium leprae and Mycobacterium tuberculosis and isolation of a functional origin from M. smegmatis . Mol Microbiol 20:283–293 [CrossRef]
    [Google Scholar]
  46. Sassetti C, Boyd D. H, Rubin E. J. 2003; Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84 [CrossRef]
    [Google Scholar]
  47. Scheffers D.-J, Jones L. F, Errington J. 2004; Several distinct localization patterns for penicillin-binding proteins in Bacillus subtilis . Mol Microbiol 51:749–764
    [Google Scholar]
  48. Shi L, Potts M, Kennelly P. J. 1998; The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol Rev 22:229–253 [CrossRef]
    [Google Scholar]
  49. Sizemore R. K, Caldwell J. J, Kendrick A. S. 1990; Alternate Gram staining technique using a fluorescent lectin. Appl Environ Microbiol 56:2245–2247
    [Google Scholar]
  50. Snapper S. B, Melton R. E, Mustafa S, Kieser T, Jacobs W. R. Jr 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis . Mol Microbiol 4:1911–1919 [CrossRef]
    [Google Scholar]
  51. Stock A. M, Robinson V. L, Gondreau P. N. 2000; Two-component signal transduction. Annu Rev Biochem 69:183–215 [CrossRef]
    [Google Scholar]
  52. Villarino A, Duran R. Wehenkel A. 8 other authors 2005; Proteomic identification of M. tuberculosis protein kinase substrates: PknB recruits GarA, a FHA domain-containing protein, through activation loop-mediated interactions. J Mol Biol 350:953–963 [CrossRef]
    [Google Scholar]
  53. Weiss D. S, Chen J. C, Ghigo J. M, Boyd D, Beckwith J. 1999; Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z Ring, FtsA, FtsQ, and FtsL. J Bacteriol 181:508–520
    [Google Scholar]
  54. Wheeler R. T, Shapiro L. 1999; Differential localization of two histidine kinases controlling bacterial cell differentiation. Mol Cell 4:683–694 [CrossRef]
    [Google Scholar]
  55. Young T. A, Delagoutte B, Endrizzi J. A, Falick A. M, Alber T. 2003; Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases. Nat Struct Biol 10:168–174 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28630-0
Loading
/content/journal/micro/10.1099/mic.0.28630-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error