1887

Abstract

A range of properties, including the ability to utilize various sugars, bind macromolecules and produce mutacins, are known to vary in their occurrence in different strains of . In addition, insertion-sequence elements show a limited distribution and sequencing of the genome of UA159 has revealed the presence of putative genomic islands of atypical base composition indicative of foreign DNA. PCR primers flanking regions suspected of having inserted DNA were designed on the basis of the genome sequence of UA159 and used to explore variation in a collection of 39 strains isolated in various parts of the world over the last 40 years. Extensive differences between strains were detected, and similar insertion/deletion events appear to be present in the genomes of strains with very different origins. In two instances, insertion of foreign DNA appears to have displaced original genes. Together with previous results on the occurrence of deletions in genes associated with sugar metabolism, the results indicate that has a core genome and a dispensable genome, and that dispensable genes have become widely distributed through horizontal transfer.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28647-0
2006-06-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/6/1777.html?itemId=/content/journal/micro/10.1099/mic.0.28647-0&mimeType=html&fmt=ahah

References

  1. Ajdic D, McShan W. M, McLaughlin R. E. 16 other authors 2002; Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99:14434–14439 [CrossRef]
    [Google Scholar]
  2. Alaluusua S, Alaluusua S. J, Karjalainen J. 7 other authors 1994; The demonstration by ribotyping of the stability of oral Streptococcus mutans infection over 5 to 7 years in children. Arch Oral Biol 39:467–471 [CrossRef]
    [Google Scholar]
  3. Altschul S. F, Gish W, Miller W, Myers E. W, Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  4. Balakrishnan M, Simmonds R. S, Kilian M, Tagg J. R. 2002; Different bacteriocin activities of Streptococcus mutans reflect distinct phylogenetic lineages. J Med Microbiol 51:941–948
    [Google Scholar]
  5. Banas J. A, Gilmore K. S. 1991; Analysis of Streptococcus mutans and Streptococcus downei mutants insertionally inactivated in the gbp and gtfA genes. In Genetics and Molecular Biology of Streptococci, Lactococci and Enterococci pp  282–283 Edited by Dunny G. M., Cleary P. P., McKay L. L. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Banas J. A, Russell R. R. B, Ferretti J. J. 1990; Sequence analysis of the gene for the glucan-binding protein of Streptococcus mutans Ingbritt. Infect Immun 58:667–673
    [Google Scholar]
  7. Banks D. J, Porcella S. F, Barbian K. D. 7 other authors 2004; Progress toward characterization of the group A Streptococcus metagenome: complete genome sequence of a macrolide-resistant serotype M6 strain. J Infect Dis 190:727–738 [CrossRef]
    [Google Scholar]
  8. Bekal-Si Ali S, Hurtubise Y, Lavoie M. C, LaPointe G. 2002; Diversity of Streptococcus mutans bacteriocins as confirmed by DNA analysis using specific molecular probes. Gene 283:125–131 [CrossRef]
    [Google Scholar]
  9. Brady L. J, Crowley P. J, Ma J. K, Kelly C, Lee S. F, Lehner T, Bleiweis A. S. 1991; Restriction fragment length polymorphisms and sequence variation within the spaP gene of Streptococcus mutans serotype c isolates. Infect Immun 59:1803–1810
    [Google Scholar]
  10. Cappiello M. G, Hantman M. J, Zuccon F. M, Peruzzi F, Amjad M, Piggot P. J, Daneo-Moore L. 1999; Physical and genetic map of Streptococcus mutans GS-5 and localization of five rRNA operons. Oral Microbiol Immunol 14:225–232 [CrossRef]
    [Google Scholar]
  11. Caufield P. W, Ratanapridakul K, Allen D. N, Cutter G. R. 1988; Plasmid-containing strains of Streptococcus mutans cluster within family and racial cohorts: implications for natural transmission. Infect Immun 56:3216–3220
    [Google Scholar]
  12. Chen P, Qi F, Novak J, Caufield P. W. 1999; The specific genes for lantibiotic mutacin II biosynthesis in Streptococcus mutans T8 are clustered and can be transferred en bloc. Appl Environ Microbiol 65:1356–1360
    [Google Scholar]
  13. Colby S. M, Russell R. R. B. 1997; Sugar metabolism by mutans streptococci. Soc Appl Bacteriol Symp Ser 26:80S–88S
    [Google Scholar]
  14. Cvitkovitch D. G, Hamilton I. R. 1994; Biochemical change exhibited by oral streptococci resulting from laboratory subculturing. Oral Microbiol Immunol 9:209–217 [CrossRef]
    [Google Scholar]
  15. de Soet J. J, Nyvad B, Kilian M. 2000; Strain-related acid production by oral streptococci. Caries Res 34:486–490 [CrossRef]
    [Google Scholar]
  16. Ellwood D. C, Baird J. K, Hunter J. R, Longyear V. M. 1976; Variations in surface polymers of Streptococcus mutans . J Dent Res 55:C42–C49 [CrossRef]
    [Google Scholar]
  17. Eppelmann K, Doekel S, Marahiel M. A. 2001; Engineered biosynthesis of the peptide antibiotic bacitracin in the surrogate host Bacillus subtilis . J Biol Chem 276:34824–34831 [CrossRef]
    [Google Scholar]
  18. Feil E. J. 2004; Small change: keeping pace with microevolution. Nat Rev Microbiol 2:483–495 [CrossRef]
    [Google Scholar]
  19. Ferretti J. J, Russell R. R. B, Dao M. L. 1989; Sequence analysis of the wall-associated protein precursor of Streptococcus mutans antigen A. Mol Microbiol 3:469–478 [CrossRef]
    [Google Scholar]
  20. Ferretti J. J, Ajdic D, McShan W. M. 2004; Comparative genomics of streptococcal species. Indian J Med Res 119:1–6
    [Google Scholar]
  21. Fujiwara T, Terao Y, Hoshino T, Kawabata S, Ooshima T, Sobue S, Kimura S, Hamada S. 1998; Molecular analyses of glucosyltransferase genes among strains of Streptococcus mutans . FEMS Microbiol Lett 161:331–336 [CrossRef]
    [Google Scholar]
  22. Fujiwara T, Nakano K, Kawaguchi M, Ooshima T, Sobue S, Kawabata S, Nakagawa I, Hamada S. 2001; Biochemical and genetic characterization of serologically untypable Streptococcus mutans strains isolated from patients with bacteremia. Eur J Oral Sci 109:330–334 [CrossRef]
    [Google Scholar]
  23. Fux C. A, Shirtliff M, Stoodley P, Costerton J. W. 2005; Can laboratory reference strains mirror ‘real-world’ pathogenesis?. Trends Microbiol 13:58–63 [CrossRef]
    [Google Scholar]
  24. Gibbons R. J, Berman K. S, Knoettner P, Kapsimalis B. 1966; Dental caries and alveolar bone loss in gnotobiotic rats infected with capsule forming streptococci of human origin. Arch Oral Biol 11:549–560 [CrossRef]
    [Google Scholar]
  25. Gronroos L, Alaluusua S. 2000; Site-specific oral colonization of mutans streptococci detected by arbitrarily primed PCR fingerprinting. Caries Res 34:474–480 [CrossRef]
    [Google Scholar]
  26. Hazlett K. R. O, Michalek S. M, Banas J. A. 1998; Inactivation of the gbpA gene of Streptococcus mutans increases virulence and promotes in vivo accumulation of recombinations between the glucosyltransferase B and C genes. Infect Immun 66:2180–2185
    [Google Scholar]
  27. Hazlett K. R. O, Mazurkiewicz J. E, Banas J. A. 1999; Inactivation of the gbpA gene of Streptococcus mutans alters structural and functional aspects of plaque biofilm which are compensated by recombination of the gtfB and gtfC genes. Infect Immun 67:3909–3914
    [Google Scholar]
  28. Herbert M. A, Beveridge C. J, McCormick D, Aten E, Jones N, Snyder L. A, Saunders N. J. 2005; Genetic islands of Streptococcus agalactiae strains NEM316 and 2603VR and their presence in other group B streptococcal strains. BMC Microbiol 5:31 [CrossRef]
    [Google Scholar]
  29. Kohler B, Krasse B. 1990; Human strains of mutans streptococci show different cariogenic potential in the hamster model. Oral Microbiol Immunol 5:177–180 [CrossRef]
    [Google Scholar]
  30. Kohler B, Birkhed D, Olsson S. 1995; Acid production by human strains of Streptococcus mutans and Streptococcus sobrinus . Caries Res 29:402–406 [CrossRef]
    [Google Scholar]
  31. Koski L. B, Morton R. A, Golding G. B. 2001; Codon bias and base composition are poor indicators of horizontally transferred genes. Mol Biol Evol 18:404–412 [CrossRef]
    [Google Scholar]
  32. Kratzschmar J, Krause M, Marahiel M. A. 1989; Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases. J Bacteriol 171:5422–5429
    [Google Scholar]
  33. Kulkarni G. V, Chan K. H, Sandham H. J. 1989; An investigation into the use of restriction endonuclease analysis for the study of transmission of mutans streptococci. J Dent Res 68:1155–1161 [CrossRef]
    [Google Scholar]
  34. Larsen R. A, Knox T. M, Miller C. G. 2001; Aspartic peptide hydrolases in Salmonella enterica serovar typhimurium . J Bacteriol 183:3089–3097 [CrossRef]
    [Google Scholar]
  35. Lassy R. A, Miller C. G. 2000; Peptidase E, a peptidase specific for N-terminal aspartic dipeptides, is a serine hydrolase. J Bacteriol 182:2536–2543 [CrossRef]
    [Google Scholar]
  36. Lee S. F, McGavin M. K. 2004; Identification of a point mutation resulting in loss of cell wall anchoring activity of SrtA of Streptococcus mutans NG5. Infect Immun 72:4314–4317 [CrossRef]
    [Google Scholar]
  37. Li Y, Caufield P. W. 1995; The fidelity of initial acquisition of mutans streptococci by infants from their mothers. J Dent Res 74:681–685 [CrossRef]
    [Google Scholar]
  38. Li Y. H, Lau P. C, Lee J. H, Ellen R. P, Cvitkovitch D. G. 2001; Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 183:897–908 [CrossRef]
    [Google Scholar]
  39. Macrina F. L, Jones K. R, Alpert C. A, Chassy B. M, Michalek S. M. 1991; Repeated DNA-sequence involved in mutations affecting transport of sucrose into Streptococcus mutans V403 via the phosphoenolpyruvate phosphotransferase system. Infect Immun 59:1535–1543
    [Google Scholar]
  40. Macrina F. L, Jones K. R, Laloi P. 1996; Characterization of IS 199 from Streptococcus mutans V403. Plasmid 36:9–18 [CrossRef]
    [Google Scholar]
  41. Mattos-Graner R. O, Napimoga M. H, Fukushima K, Duncan M. J, Smith D. J. 2004; Comparative analysis of Gtf isozyme production and diversity in isolates of Streptococcus mutans with different biofilm growth phenotypes. J Clin Microbiol 42:4586–4592 [CrossRef]
    [Google Scholar]
  42. McBride B. C, Song M, Krasse B, Olsson J. 1984; Biochemical and immunological differences between hydrophobic and hydrophilic strains of Streptococcus mutans . Infect Immun 44:68–75
    [Google Scholar]
  43. Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R. 2005; The microbial pan-genome. Curr Opin Genet Dev 15:589–594 [CrossRef]
    [Google Scholar]
  44. Mootz H. D, Marahiel M. A. 1997; The tyrocidine biosynthesis operon of Bacillus brevis : complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. J Bacteriol 179:6843–6850
    [Google Scholar]
  45. Munro C, Michalek S. M, Macrina F. L. 1991; Cariogenicity of Streptococcus mutans V403 glucosyltransferase and fructosyltransferase mutants constructed by allelic exchange. Infect Immun 59:2316–2323
    [Google Scholar]
  46. Nakano K, Nomura R, Shimizu N, Nakagawa I, Hamada S, Ooshima T. 2004; Development of a PCR method for rapid identification of new Streptococcus mutans serotype k strains. J Clin Microbiol 42:4925–4930 [CrossRef]
    [Google Scholar]
  47. Napimoga M. H, Kamiya R. A. U, Rosa R. T, Rosa E. A. R, Hofling J. F, Mattos-Graner R. D, Goncavles R. B. 2004; Genotypic diversity and virulence traits of Streptococcus mutans in caries-free and caries-active individuals. J Med Microbiol 53:697–703 [CrossRef]
    [Google Scholar]
  48. Okahashi N, Sasakawa C, Okada N, Yamada M, Yoshikawa M, Tokuda M, Takahashi I, Koga T. 1990; Construction of Not I restriction map of the Streptococcus mutans genome. J Gen Microbiol 136:2217–2223 [CrossRef]
    [Google Scholar]
  49. Old L. A, Lowes S, Russell R. R. B. 2006; Genomic variation in Streptococcus mutans : deletions affecting the multiple pathways of β -glucoside metabolism. Oral Microbiol Immunol 21:21–27 [CrossRef]
    [Google Scholar]
  50. Qi F, Chen P, Caufield P. W. 1999a; Purification of mutacin III from group III Streptococcus mutans UA787 and genetic analyses of mutacin III biosynthesis genes. Appl Environ Microbiol 65:3880–3887
    [Google Scholar]
  51. Qi F, Chen P, Caufield P. W. 1999b; Functional analyses of the promoters in the lantibiotic mutacin II biosynthetic locus in Streptococcus mutans . Appl Environ Microbiol 65:652–658
    [Google Scholar]
  52. Qi F, Chen P, Caufield P. W. 2000; Purification and biochemical characterization of mutacin I from the group I strain of Streptococcus mutans , CH43, and genetic analysis of mutacin I biosynthesis genes. Appl Environ Microbiol 66:3221–3229 [CrossRef]
    [Google Scholar]
  53. Robinson W. G, Old L. A, Shah D. S. H, Russell R. R. B. 2003; Chromosomal insertions and deletions in Streptococcus mutans . Caries Res 37:148–156 [CrossRef]
    [Google Scholar]
  54. Rozen S, Skaletsky H. 2000; Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386
    [Google Scholar]
  55. Russell R. R. B. 2003; Microbiological aspects of caries prevention. In Prevention of Oral Diseases pp  63–75 Edited by Murray J. J., Nunn J. H., Steele J. G. Oxford: Oxford University Press;
    [Google Scholar]
  56. Russell R. R. B, Smith K. 1986; Effect of subculturing on location of Streptococcus mutans antigens. FEMS Microbiol Lett 35:319–323 [CrossRef]
    [Google Scholar]
  57. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream M. A, Barrell B. 2000; Artemis: sequence visualization and annotation. Bioinformatics 16:944–945 [CrossRef]
    [Google Scholar]
  58. Sato Y, Okamoto K, Kizaki H. 2002; gbpC and pac gene mutations detected in Streptococcus mutans strain GS-5. Oral Microbiol Immunol 17:263–266 [CrossRef]
    [Google Scholar]
  59. Sato Y, Okamoto K, Kagami A, Yamamoto Y, Igarashi T, Kizaki H. 2004a; Streptococcus mutans strains harboring collagen-binding adhesin. J Dent Res 83:534–539 [CrossRef]
    [Google Scholar]
  60. Sato Y, Okamoto K, Kagami A, Yamamoto Y, Ohta K, Igarashi T, Kizaki H. 2004b; Application of in vitro mutagenesis to identify the gene responsible for cold agglutination phenotype of Streptococcus mutans . Microbiol Immunol 48:449–456 [CrossRef]
    [Google Scholar]
  61. Saxena D, Li Y, Caufield P. W. 2005; Identification of unique bacterial gene segments from Streptococcus mutans with potential relevance to dental caries by subtraction DNA hybridization. J Clin Microbiol 43:3508–3511 [CrossRef]
    [Google Scholar]
  62. Shah D. S. H, Russell R. R. B. 2004; A novel glucan-binding protein with lipase activity from the oral pathogen Streptococcus mutans . Microbiology 150:1947–1956 [CrossRef]
    [Google Scholar]
  63. Shibata Y, Ozaki K, Seki M, Kawato T, Tanaka H, Nakano Y, Yamashita Y. 2003; Analysis of loci required for determination of serotype antigenicity in Streptococcus mutans and its clinical utilization. J Clin Microbiol 41:4107–4112 [CrossRef]
    [Google Scholar]
  64. Simpson C. L, Russell R. R. B. 1998; Identification of a homolog of CcpA catabolite repressor protein in Streptococcus mutans . Infect Immun 66:2085–2092
    [Google Scholar]
  65. Tao L, MacAlister T. J, Tanzer J. M. 1993; Transformation efficiency of EMS-induced mutants of Streptococcus mutans of altered cell shape. J Dent Res 72:1032–1039 [CrossRef]
    [Google Scholar]
  66. Tettelin H, Masignani V, Cieslewicz M. J. 43 other authors 2005; Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae : implications for the microbial ‘pan-genome’. Proc Natl Acad Sci U S A 102:13950–13955 [CrossRef]
    [Google Scholar]
  67. Thompson J. D, Higgins D. G, Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  68. Thompson J. D, Gibson T. J, Plewniak F, Jeanmougin F, Higgins D. G. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  69. Ueda S, Kuramitsu H. K. 1988; Molecular basis for the spontaneous generation of colonization-defective mutants of Streptococcus mutans . Mol Microbiol 2:135–140 [CrossRef]
    [Google Scholar]
  70. Ushiro I, Lumb S. M, Aduse-Opoku J, Ferretti J. J, Russell R. R. B. 1991; Chromosomal deletions in melibiose-negative isolates of Streptococcus mutans . J Dent Res 70:1422–1426 [CrossRef]
    [Google Scholar]
  71. Yonezawa H, Kuramitsu H. K. 2005; Genetic analysis of a unique bacteriocin, Smb, produced by Streptococcus mutans GS5. Antimicrob Agents Chemother 49:541–548 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28647-0
Loading
/content/journal/micro/10.1099/mic.0.28647-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error