1887

Abstract

A highly conserved cryptic plasmid is present in yet naturally occurring plasmid-deficient isolates are very rare. This paper describes the isolation and characterization of a plasmid-deficient strain of , using novobiocin as a curing agent. Plasmid-deficient derivatives of strain Nigg were generated at high efficiencies (4–30 %). Phenotypic characterization revealed that the cured derivative was unable to accumulate glycogen within intracytoplasmic inclusions. In addition, this strain formed small plaques at a reduced efficiency compared to the wild-type parent.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28658-0
2006-06-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/6/1601.html?itemId=/content/journal/micro/10.1099/mic.0.28658-0&mimeType=html&fmt=ahah

References

  1. Banks J, Eddie B, Schachter J, Meyer K. F. 1970; Plaque formation by Chlamydia in L cells. Infect Immun 1:259–262
    [Google Scholar]
  2. Belland R. J, Zhong G, Crane D. D, Hogan D, Sturdevant D, Sharma J, Beatty W. L, Caldwell H. D. 2003; Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis . Proc Natl Acad Sci U S A 100:8478–8483 [CrossRef]
    [Google Scholar]
  3. Carabeo R. A, Hackstadt T. 2001; Isolation and characterization of a mutant Chinese hamster ovary cell line that is resistant to Chlamydia trachomatis infection at a novel step in the attachment process. Infect Immun 69:5899–5904 [CrossRef]
    [Google Scholar]
  4. Carlson J. H, Porcella S. F, McClarty G, Caldwell H. D. 2005; Comparative genomic analysis of Chlamydia trachomatis oculotropic and genitotropic strains. Infect Immun 73:6407–6418 [CrossRef]
    [Google Scholar]
  5. Chen J. C, Stephens R. S. 1997; Chlamydia trachomatis glycosaminoglycan-dependent and independent attachment to eukaryotic cells. Microb Pathog 22:23–30 [CrossRef]
    [Google Scholar]
  6. Comanducci M, Cevenini R, Moroni A, Giuliani M. M, Ricci S, Scarlato V, Ratti G. 1993; Expression of a plasmid gene of Chlamydia trachomatis encoding a novel 28 kDa antigen. J Gen Microbiol 139:1083–1092 [CrossRef]
    [Google Scholar]
  7. Davis C. H, Raulston J. E, Wyrick P. B. 2002; Protein disulfide isomerase, a component of the estrogen receptor complex, is associated with Chlamydia trachomatis serovar E attached to human endometrial epithelial cells. Infect Immun 70:3413–3418 [CrossRef]
    [Google Scholar]
  8. Dean D, Oudens E, Bolan G, Padian N, Schachter J. 1995; Major outer membrane protein variants of Chlamydia trachomatis are associated with severe upper genital tract infections and histopathology in San Francisco. J Infect Dis 172:1013–1022 [CrossRef]
    [Google Scholar]
  9. Fahr M. J, Sriprakash K. S, Hatch T. P. 1992; Convergent and overlapping transcripts of the Chlamydia trachomatis 7.5-kb plasmid. Plasmid 28:247–257 [CrossRef]
    [Google Scholar]
  10. Farencena A, Comanducci M, Donati M, Ratti G, Cevenini R. 1997; Characterization of a new isolate of Chlamydia trachomatis which lacks the common plasmid and has properties of biovar trachoma. Infect Immun 65:2965–2969
    [Google Scholar]
  11. Gado I, Toth I, Szvoboda G. 1987; Curing of plasmid pE194 with novobiocin and coumermycin A1 in Bacillus subtilis and Staphylococcus aureus . Zentralbl Bakteriol Mikrobiol Hyg A 265:136–145
    [Google Scholar]
  12. Hooper D. C, Wolfson J. S, McHugh G. L, Swartz M. D, Tung C, Swartz M. N. 1984; Elimination of plasmid pMG110 from Escherichia coli by novobiocin and other inhibitors of DNA gyrase. Antimicrob Agents Chemother 25:586–590 [CrossRef]
    [Google Scholar]
  13. Hussy P, Maass G, Tummler B, Grosse F, Schomburg U. 1986; Effect of 4-quinolones and novobiocin on calf thymus DNA polymerase alpha primase complex, topoisomerases I and II, and growth of mammalian lymphoblasts. Antimicrob Agents Chemother 29:1073–1078 [CrossRef]
    [Google Scholar]
  14. Kalman S, Mitchell W, Marathe R. 7 other authors 1999; Comparative genomes of Chlamydia pneumoniae and C. trachomatis . Nat Genet 21:385–389 [CrossRef]
    [Google Scholar]
  15. Kelly K. A, Robinson E. A, Rank R. G. 1996; Initial route of antigen administration alters the T-cell cytokine profile produced in response to the mouse pneumonitis biovar of Chlamydia trachomatis following genital infection. Infect Immun 64:4976–4983
    [Google Scholar]
  16. Lee C. K. 1981; Interaction between a trachoma strain of Chlamydia trachomatis and mouse fibroblasts (McCoy cells) in the absence of centrifugation. Infect Immun 31:584–591
    [Google Scholar]
  17. Lusher M, Storey C. C, Richmond S. J. 1989; Plasmid diversity within the genus Chlamydia . J Gen Microbiol 135:Pt 51145–1151
    [Google Scholar]
  18. Luttinger A. 1995; The twisted ‘life’ of DNA in the cell: bacterial topoisomerases. Mol Microbiol 15:601–606
    [Google Scholar]
  19. Matsumoto A, Izutsu H, Miyashita N, Ohuchi M. 1998; Plaque formation by and plaque cloning of Chlamydia trachomatis biovar trachoma. J Clin Microbiol 36:3013–3019
    [Google Scholar]
  20. McClenaghan M, Honeycombe J. R, Bevan B. J, Herring A. J. 1988; Distribution of plasmid sequences in avian and mammalian strains of Chlamydia psittaci . J Gen Microbiol 134:559–565
    [Google Scholar]
  21. Miyashita N, Matsumoto A, Matsushima T. 2000; In vitro susceptibility of 7.5-kb common plasmid-free Chlamydia trachomatis strains. Microbiol Immunol 44:267–269 [CrossRef]
    [Google Scholar]
  22. Nigg C. 1942; An unidentified virus which produces pneumonia and systemic infection in mice. Science 95:49–50
    [Google Scholar]
  23. O'Connell C. M. C, Maurelli A. T. 1998 Introduction of Foreign DNA into Chlamydia and Stable Expression of Chloramphenicol Resistance pp  519–522 San Francisco, CA: International Chlamydial Symposium;
    [Google Scholar]
  24. Pearce J. H, Allan I, Ainsworth S. 1981; Interaction of chlamydiae with host cells and mucous surfaces. Ciba Found Symp 80:234–249
    [Google Scholar]
  25. Pearce B. J, Fahr M. J, Hatch T. P, Sriprakash K. S. 1991; A chlamydial plasmid is differentially transcribed during the life cycle of Chlamydia trachomatis . Plasmid 26:116–122 [CrossRef]
    [Google Scholar]
  26. Peterson E. M, Markoff B. A, Schachter J, De La Maza L. M. 1990; The 7.5-kb plasmid present in Chlamydia trachomatis is not essential for the growth of this microorganism. Plasmid 23:144–148 [CrossRef]
    [Google Scholar]
  27. Pickett M. A, Everson J. S, Pead P. J, Clarke I. N. 2005; The plasmids of Chlamydia trachomatis and Chlamydophila pneumoniae (N16): accurate determination of copy number and the paradoxical effect of plasmid-curing agents. Microbiology 151:893–903 [CrossRef]
    [Google Scholar]
  28. Read T. D, Brunham R. C, Shen C. 22 other authors 2000; Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28:1397–1406 [CrossRef]
    [Google Scholar]
  29. Read T. D, Myers G. S, Brunham R. C. 18 other authors 2003; Genome sequence of Chlamydiophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae. Nucleic Acids Res 31:2134–2147 [CrossRef]
    [Google Scholar]
  30. Rota T. R. 1977; Chlamydia trachomatis in cell culture. II. Susceptibility of seven established mammalian cell types in vitro. Adaptation of trachoma organisms to McCoy and BHK-21 cells. In Vitro 13:280–292 [CrossRef]
    [Google Scholar]
  31. Schachter J, Dawson C. R. 1978; Laboratory diagnosis. In Human Chlamydial Infections pp  181–220 Littleton, MA: PSG Publishing Co;
    [Google Scholar]
  32. Stephens R. S, Kalman S, Lammel C. 1998; Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis . Science 282:754–759 [CrossRef]
    [Google Scholar]
  33. Stothard D. R, Williams J. A, Van Der Pol B, Jones R. B. 1998; Identification of a Chlamydia trachomatis serovar E urogenital isolate which lacks the cryptic plasmid. Infect Immun 66:6010–6013
    [Google Scholar]
  34. Tam J. E, Davis C. H, Thresher R. J, Wyrick P. B. 1992; Location of the origin of replication for the 7.5-kb Chlamydia trachomatis plasmid. Plasmid 27:231–236 [CrossRef]
    [Google Scholar]
  35. Thomas N. S, Lusher M, Storey C. C, Clarke I. N. 1997; Plasmid diversity in Chlamydia . Microbiology 143:1847–1854 [CrossRef]
    [Google Scholar]
  36. Tropp B. E, Ragolia L, Xia W, Dowhan W, Milkman R, Rudd K. E, Ivanisevic R, Savic D. J. 1995; Identity of the Escherichia coli cls and nov genes. J Bacteriol 177:5155–5157
    [Google Scholar]
  37. Wolfson J. S, Hooper D. C, Swartz M. N, Swartz M. D, McHugh G. L. 1983; Novobiocin-induced elimination of F′ lac and mini-F plasmids from Escherichia coli . J Bacteriol 156:1165–1170
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28658-0
Loading
/content/journal/micro/10.1099/mic.0.28658-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error