1887

Abstract

The importance of aquaporin expression in water permeability in was assessed by measuring the osmotic water permeability coefficient ( ) and the activation energies ( ) from both hypo- and hypertonic experiments performed with whole protoplasts from four strains differing in aquaporin level of expression: parental, double-deleted and overexpressing or . Double-deleted (lower ) and -overexpressing strains (higher ) presented linear Arrhenius plots with consistent with fluxes mainly through the lipids [16·3 kcal mol (68·2 kJ mol)] and with a strong contribution of channels [9·6 kcal mol (40·2 kJ mol)], respectively. The Arrhenius plots for the parental (swelling experiments) and overexpressing strains (swelling and shrinking experiments) were not linear, presenting a break point with a change in slope around 23 °C. The values for these strains, calculated for temperatures ranging from 7 to 23 °C, were lower [9·5 kcal mol (39·7 kJ mol)] than the values obtained from 23 to 38 °C [17 kcal mol (71·1 kJ mol)]. This behaviour indicates that only in the lower temperature range did the water fluxes occur predominantly via the water channels. The permeabilities for each strain relative to the deletion strain show that an increase in permeability due to the presence of aquaporins was more relevant at low temperatures. Following our results, we propose that water channels play an important role for osmotic adjustment of yeast cells at low temperature.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28679-0
2006-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/5/1515.html?itemId=/content/journal/micro/10.1099/mic.0.28679-0&mimeType=html&fmt=ahah

References

  1. Alves-Araujo C., Almeida M. J., Sousa M. J., Leao C. 2004; Freeze tolerance of the yeast Torulaspora delbrueckii : cellular and biochemical basis. FEMS Microbiol Lett 240:7–14 [CrossRef]
    [Google Scholar]
  2. Aroca R., Amodeo G., Fernandez-Illescas S., Herman E. M., Chaumont F., Chrispeels M. J. 2005; The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots. Plant Physiol 137:341–353 [CrossRef]
    [Google Scholar]
  3. Balk P. A., de Boer A. D. 1999; Rapid stalk elongation in tulip ( Tulipa gesneriana L. cv. Apeldoorn) and the combined action of cold-induced invertase and the water-channel protein gammaTIP. Planta 209:346–354 [CrossRef]
    [Google Scholar]
  4. Bonhivers M., Carbrey J. M., Gould S. J., Agre P. 1998; Aquaporins in Saccharomyces . Genetic and functional distinctions between laboratory and wild-type strains. J Biol Chem 273:27565–27572 [CrossRef]
    [Google Scholar]
  5. Chen R. F., Knutson J. R. 1988; Mechanism of fluorescence concentration quenching of carboxyfluorescein in liposomes: energy transfer to nonfluorescent dimers. Anal Biochem 172:61–77 [CrossRef]
    [Google Scholar]
  6. Farmer R. E., Macey R. I. 1970; Perturbation of red cell volume: rectification of osmotic flow. Biochim Biophys Acta 196:53–65 [CrossRef]
    [Google Scholar]
  7. Faye G., Kujawa C., Fukuhara H. 1974; Physical and genetic organization of petite and grande yeast mitochondrial DNA. IV. In vivo transcription products of mitochondrial DNA and localization of 23 S ribosomal RNA in petite mutants of Saccharomyces cerevisiae . J Mol Biol 88:185–203 [CrossRef]
    [Google Scholar]
  8. Güldener U., Heck S., Fielder T., Beinhauer J., Hegenann J. H. 1996; A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524 [CrossRef]
    [Google Scholar]
  9. Laizé V., Gobin R., Rousselet G., Badier C., Hohmann S., Ripoche P., Tacnet F. 1999; Molecular and functional study of AQY1 from Saccharomyces cerevisiae : role of the C-terminal domain. Biochem Biophys Res Commun 257:139–144 [CrossRef]
    [Google Scholar]
  10. Laizé V., Tacnet F., Ripoche P., Hohmann S. 2000; Polymorphism of Saccharomyces cerevisiae aquaporins. Yeast 16:897–903 [CrossRef]
    [Google Scholar]
  11. Macey R. I., Karan D. M., Farmer R. E. 1972; Properties of water channels in human red cells. Biomembranes 3:331–340
    [Google Scholar]
  12. Meyrial V., Gobin R., Ripoche P., Hohmann S., Tacnet F, Laizé V. 2001; Existence of a tightly regulated water channel in Saccharomyces cerevisiae . Eur J Biochem 268:334–343 [CrossRef]
    [Google Scholar]
  13. Paganelli C. V., Solomon A. K. 1957; The rate of exchange of tritiated water across the human red cell membrane. J Gen Physiol 41:259–277 [CrossRef]
    [Google Scholar]
  14. Perevucnik G., Schurtenberger P., Lasic D. D., Hauser H. 1985; Size analysis of biological membrane vesicles by gel filtration, dynamic light scattering and electron microscopy. Biochim Biophys Acta 821:169–173 [CrossRef]
    [Google Scholar]
  15. Preston G. M., Carroll T. P., Guggino W. B., Agre P. 1992; Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387 [CrossRef]
    [Google Scholar]
  16. Rodriguez-Vargas S., Estruch F., Randez-Gil F. 2002; Gene expression analysis of cold and freeze stress in Baker's yeast. Appl Environ Microbiol 68:3024–3030 [CrossRef]
    [Google Scholar]
  17. Sahara T., Goda T., Ohgiya S. 2002; Comprehensive expression analysis of time-dependent genetic responses in yeast cells to low temperature. J Biol Chem 277:50015–50021 [CrossRef]
    [Google Scholar]
  18. Sidoux-Walter F., Pettersson N., Hohmann S. 2004; The Saccharomyces cerevisiae aquaporin Aqy1 is involved in sporulation. Proc Natl Acad Sci U S A 101:17422–17427 [CrossRef]
    [Google Scholar]
  19. Tanghe A., Van Dijck P., Dumortier F., Teunissen A., Hohmann S., Thevelein J. M. 2002; Aquaporin expression correlates with freeze tolerance in baker's yeast, and overexpression improves freeze tolerance in industrial strains. Appl Environ Microbiol 68:5981–5989 [CrossRef]
    [Google Scholar]
  20. Tanghe A., Van Dijck P., Thevelein J. M. 2003; Determinants of freeze tolerance in microorganisms, physiological importance, and biotechnological applications. Adv Appl Microbiol 53:129–176
    [Google Scholar]
  21. Tanghe A., Van Dijck P., Colavizza D., Thevelein J. M. 2004; Aquaporin-mediated improvement of freeze tolerance of Saccharomyces cerevisiae is restricted to rapid freezing conditions. Appl Environ Microbiol 70:3377–3382 [CrossRef]
    [Google Scholar]
  22. van Heeswijk M. P., van Os C. H. 1986; Osmotic water permeabilities of brush border and basolateral membrane vesicles from rat renal cortex and small intestine. J Membr Biol 92:183–193 [CrossRef]
    [Google Scholar]
  23. Verkman A. S. 1992; Water channels in cell membranes. Annu Rev Physiol 54:97–108 [CrossRef]
    [Google Scholar]
  24. Vieira F. L., Sha'afi R. I., Solomon A. K. 1970; The state of water in human and dog red cell membranes. J Gen Physiol 55:451–466 [CrossRef]
    [Google Scholar]
  25. Wang W., Ben R. N. 2004; Upregulation and protein trafficking of aquaporin-2 attenuate cold-induced osmotic damage during cryopreservation. In Vitro Cell Dev Biol Anim 40:67–70
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28679-0
Loading
/content/journal/micro/10.1099/mic.0.28679-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error