1887

Abstract

It was previously shown that 1-antitrypsin (AAT) interacts with the type III secreted (T3S) EspB and EspD proteins of enteropathogenic (EPEC), resulting in reduced functionality of the proteins. To determine if AAT is also able to interact with T3S proteins of other pathogens, the binding of AAT to Yop proteins of was analysed. AAT did not interact with YopB or YopD, which have functions in type III translocation similar to EspB and EspD in EPEC, but specifically interacts with YopM, a member of the leucine-rich repeat (LRR) family of proteins, in overlay and pull-down assays. To determine regions of YopM involved in AAT binding, various N- and C-terminally truncated versions of YopM were recombinantly expressed, and their ability to interact with AAT analysed. All versions tested were able to bind AAT, indicating that at least eight LRR of YopM are sufficient for AAT interaction. The main physiological role of AAT is to inhibit neutrophil elastase; however, elastase was efficiently inhibited by AAT in the presence and absence of YopM, indicating that YopM does not interfere with the anti-protease inhibition activity of AAT, and that the domain of AAT interacting with YopM is not identical to AAT's protease interaction domain. Furthermore, it was shown that elastase efficiently degrades YopM and other Yop proteins. The data suggest that AAT has additional functions in the host response against bacterial infections that are not related to its anti-protease activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28697-0
2006-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/5/1327.html?itemId=/content/journal/micro/10.1099/mic.0.28697-0&mimeType=html&fmt=ahah

References

  1. Aldonyte R., Jansson L., Janciauskiene S. 2004; Concentration-dependent effects of native and polymerised α 1-antitrypsin on primary human monocytes, in vitro. BMC Cell Biol 5:11 [CrossRef]
    [Google Scholar]
  2. Benner G. E., Andrews G. P., Byrne W. R., Strachan S. D., Sample A. K., Heath D. G., Friedlander A. M. 1999; Immune response to Yersinia outer proteins and other Yersinia pestis antigens after experimental plague infection in mice. Infect Immun 67:1922–1928
    [Google Scholar]
  3. Boland A., Havaux S., Cornelis G. R. 1998; Heterogeneity of the Yersinia YopM protein. Microb Pathog 25:343–348 [CrossRef]
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  5. Brantly M. 2002; α 1-Antitrypsin: not just an antiprotease. Extending the half-life of a natural anti-inflammatory molecule by conjugation with polyethylene glycol. Am J Respir Cell Mol Biol 27:652–654 [CrossRef]
    [Google Scholar]
  6. Cheng L. W., Schneewind O. 2000; Yersinia enterocolitica TyeA, an intracellular regulator of the type III machinery, is required for specific targeting of YopE, YopH, YopM, and YopN into the cytosol of eukaryotic cells. J Bacteriol 182:3183–3190 [CrossRef]
    [Google Scholar]
  7. Cornelis G. R. 2002; The Yersinia Ysc-Yop ‘type III’ weaponry. Nat Rev Mol Cell Biol 3:742–752 [CrossRef]
    [Google Scholar]
  8. Crystal R. G. 1990; α 1-Antitrypsin deficiency, emphysema, and liver disease. Genetic basis and strategies for therapy. J Clin Invest 85:1343–1352 [CrossRef]
    [Google Scholar]
  9. Evdokimov A. G., Anderson D. E., Routzahn K. M., Waugh D. S. 2001; Unusual molecular architecture of the Yersinia pestis cytotoxin YopM: a leucine-rich repeat protein with the shortest repeating unit. J Mol Biol 312:807–821 [CrossRef]
    [Google Scholar]
  10. Hiemstra P. S. 2002; Novel roles of protease inhibitors in infection and inflammation. Biochem Soc Trans 30:116–120
    [Google Scholar]
  11. Hines J., Skrzypek E., Kajava A. V., Straley S. C. 2001; Structure-function analysis of Yersinia pestis YopM's interaction with alpha-thrombin to rule on its significance in systemic plague and to model YopM's mechanism of binding host proteins. Microb Pathog 30:193–209 [CrossRef]
    [Google Scholar]
  12. Hoffmann R., Trulzsch K., Heesemann J, van Erp K. 2004; Transcriptional responses of murine macrophages to infection with Yersinia enterocolitica . Cell Microbiol 6:377–390 [CrossRef]
    [Google Scholar]
  13. Hueck C. J. 1998; Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433
    [Google Scholar]
  14. Ide T., Laarmann S., Greune L., Schillers H., Oberleithner H., Schmidt M. A. 2001; Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli . Cell Microbiol 3:669–679 [CrossRef]
    [Google Scholar]
  15. Kalsheker N., Morley S., Morgan K. 2002; Gene regulation of the serine proteinase inhibitors α 1-antitrypsin and α 1-antichymotrypsin. Biochem Soc Trans 30:93–98
    [Google Scholar]
  16. Kerschen E. J., Cohen D. A., Kaplan A. M., Straley S. C. 2004; The plague virulence protein YopM targets the innate immune response by causing a global depletion of NK cells. Infect Immun 72:4589–4602 [CrossRef]
    [Google Scholar]
  17. Kinder S. A., Badger J. L., Bryant G. O., Pepe J. C., Miller V. L. 1993; Cloning of the Yen I restriction endonuclease and methyltransferase from Yersinia enterocolitica serotype O : 8 and construction of a transformable RM+ mutant. Gene 136:271–275 [CrossRef]
    [Google Scholar]
  18. Knappstein S., Ide T., Schmidt M. A., Heusipp G. 2004; α 1-Antitrypsin binds to and interferes with functionality of EspB from atypical and typical enteropathogenic Escherichia coli strains. Infect Immun 72:4344–4350 [CrossRef]
    [Google Scholar]
  19. Kobe B., Kajava A. V. 2001; The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11:725–732 [CrossRef]
    [Google Scholar]
  20. Laine A., Leroy A., Hachulla E., Davril M., Dessaint J. P. 1990; Comparison of the effects of purified human α 1-antichymotrypsin and α 1-proteinase inhibitor on NK cytotoxicity: only α 1-proteinase inhibitor inhibits natural killing. Clin Chim Acta 190:163–173 [CrossRef]
    [Google Scholar]
  21. Leung K. Y., Reisner B. S., Straley S. C. 1990; YopM inhibits platelet aggregation and is necessary for virulence of Yersinia pestis in mice. Infect Immun 58:3262–3271
    [Google Scholar]
  22. Marketon M. M., DePaolo R. W., DeBord K. L., Jabri B., Schneewind O. 2005; Plague bacteria target immune cells during infection. Science 309:1739–1741 [CrossRef]
    [Google Scholar]
  23. McDonald C., Vacratsis P. O., Bliska J. B., Dixon J. E. 2003; The Yersinia virulence factor YopM forms a novel protein complex with two cellular kinases. J Biol Chem 278:18514–18523 [CrossRef]
    [Google Scholar]
  24. Miller V. L., Mekalanos J. J. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR . J Bacteriol 170:2575–2583
    [Google Scholar]
  25. Molmenti E. P., Perlmutter D. H., Rubin D. C. 1993; Cell-specific expression of α 1-antitrypsin in human intestinal epithelium. J Clin Invest 92:2022–2034 [CrossRef]
    [Google Scholar]
  26. Mulder B., Michiels T., Simonet M., Sory M.-P., Cornelis G. 1989; Identification of additional virulence determinants on the pYV plasmid of Yersinia enterocolitica W227. Infect Immun 57:2534–2541
    [Google Scholar]
  27. Nemeth J., Straley S. C. 1997; Effect of Yersinia pestis YopM on experimental plague. Infect Immun 65:924–930
    [Google Scholar]
  28. Neyt C., Cornelis G. R. 1999; Insertion of a Yop translocation pore into the macrophage plasma membrane by Yersinia enterocolitica : requirement for translocators YopB and YopD, but not LcrG. Mol Microbiol 33:971–981 [CrossRef]
    [Google Scholar]
  29. Okumura Y., Kudo J., Ikuta T., Kurokawa S., Ishibashi H., Okubo H. 1985; Influence of acute-phase proteins on the activity of natural killer cells. Inflammation 9:211–219 [CrossRef]
    [Google Scholar]
  30. Owen C. A., Campbell E. J. 1999; The cell biology of leukocyte-mediated proteolysis. J Leukoc Biol 65:137–150
    [Google Scholar]
  31. Perlmutter D. H., Cole F. S., Kilbridge P., Rossing T. H., Colten H. R. 1985; Expression of the α 1-proteinase inhibitor gene in human monocytes and macrophages. Proc Natl Acad Sci U S A 82:795–799 [CrossRef]
    [Google Scholar]
  32. Perlmutter D. H., Daniels J. D., Auerbach H. S., De Schryver-Kecskemeti K., Winter H. S., Alpers D. H. 1989; The α 1-antitrypsin gene is expressed in a human intestinal epithelial cell line. J Biol Chem 264:9485–9490
    [Google Scholar]
  33. Reisner B. S., Straley S. C. 1992; Yersinia pestis YopM: thrombin binding and overexpression. Infect Immun 60:5242–5252
    [Google Scholar]
  34. Sauvonnet N., Pradet-Balade B., Garcia-Sanz J. A., Cornelis G. R. 2002; Regulation of mRNA expression in macrophages after Yersinia enterocolitica infection. Role of different Yop effectors. J Biol Chem 277:25133–25142 [CrossRef]
    [Google Scholar]
  35. Skrzypek E., Cowan C., Straley S. C. 1998; Targeting of the Yersinia pestis YopM protein into HeLa cells and intracellular trafficking to the nucleus. Mol Microbiol 30:1051–1065 [CrossRef]
    [Google Scholar]
  36. Viboud G. I., Bliska J. B. 2005; Yersinia outer proteins: role in modulation of host cell signalling responses and pathogenesis. Annu Rev Microbiol 59:69–89 [CrossRef]
    [Google Scholar]
  37. Weinrauch Y., Drujan D., Shapiro S. D., Weiss J., Zychlinsky A. 2002; Neutrophil elastase targets virulence factors of enterobacteria. Nature 417:91–94 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28697-0
Loading
/content/journal/micro/10.1099/mic.0.28697-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error