1887

Abstract

Two kinds of nucleoside hydrolases (NHs) encoded by and were cloned from using - and -defective . Sequence analysis revealed that NH 1 was a protein of 337 aa with a deduced molecular mass of 35 892 Da, whereas NH 2 consisted of 308 aa with a calculated molecular mass of 32 310 Da. Experiments with crude extracts of IPTG-induced CGSC 6885(pTNU23) and 6885(pTNI12) indicated that the Rih1 enzyme could catalyse the hydrolysis of uridine and cytidine and showed pyrimidine-specific ribonucleoside hydrolase activity. Rih2 was able to hydrolyse both purine and pyrimidine ribonucleosides with the following order of activity – inosine>adenosine>uridine>guanosine>xanthosine>cytidine – and was classified in the non-specific NHs family. and deletion mutants displayed a decrease in cell growth on minimal medium supplemented with pyrimidine and purine/pyrimidine nucleosides, respectively, compared with the wild-type strain. Growth of each mutant was substantially complemented by introducing and , respectively. Furthermore, disruption of both and led to the inability of the mutant to utilize purine and pyrimidine nucleosides as sole carbon source on minimal medium. These results indicated that and play major roles in the salvage pathways of nucleosides in this micro-organism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28703-0
2006-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/4/1169.html?itemId=/content/journal/micro/10.1099/mic.0.28703-0&mimeType=html&fmt=ahah

References

  1. Auling G, Moss B. 1984; Metabolism of pyrimidine bases and nucleosides in the coryneform bacteria Brevibacterium ammoniagenes and Micrococcus luteus . J Bacteriol 158:733–736
    [Google Scholar]
  2. Balbas P, Alexeyev M, Shokolenko I, Bolivar F, Valle F. 1996; A pBRINT family of plasmids for integration of cloned DNA into the Escherichia coli chromosome. Gene 172:65–69 [CrossRef]
    [Google Scholar]
  3. Camici M, Tozzi M. G, Allegrini S, Del Corso A, Ipata P. L. 1990; Purine salvage enzyme activities in normal and neoplastic human tissues. Cancer Biochem Biophys 11:201–209
    [Google Scholar]
  4. Chung S. O, Lee J. H, Lee S. Y, Lee D. S. 1996; Genomic organization of purK and purE in Brevibacterium ammoniagenes ATCC 6872: purE locus provides a clue for genomic evolution. FEMS Microbiol Lett 137:265–268 [CrossRef]
    [Google Scholar]
  5. Degano M, Gopaul D. N, Scapin G, Schramm V. L, Sacchettini J. C. 1996; Three-dimensional structure of the inosine-uridine nucleoside N -ribohydrolase from Crithidia fasciculata . Biochemistry 35:5971–5981 [CrossRef]
    [Google Scholar]
  6. Desgranges C, Konrad M, Daignan-Fornier B. 2001; YLR209c encodes Saccharomyces cerevisiae purine nucleoside phosphorylase. J Bacteriol 183:4910–4913 [CrossRef]
    [Google Scholar]
  7. Dunican L. K, Shivan E. 1989; High frequency transformation of whole cells of amino acid producing coryneform bacteria using high voltage electroporation. Bio/Technol 7:1067–1070
    [Google Scholar]
  8. Estupinan B, Schramm V. L. 1994; Guanosine-inosine-preferring nucleoside N -glycohydrolase from Crithidia fasciculata . J Biol Chem 269:23068–23073
    [Google Scholar]
  9. Hamamoto T, Noguchi T, Midorikawa Y. 1996; Purification and characterization of purine nucleoside phosphorylase and pyrimidine nucleoside phosphorylase from Bacillus stearothermophilus TH6-2. Biosci Biotechnol Biochem 60:1179–1180 [CrossRef]
    [Google Scholar]
  10. Hansen M. R, Dandanell G. 2005; Purification and characterization of RihC, a xanthosine-inosine-uridine-adenosine-preferring hydrolase from Salmonella enterica serovar Typhimurium . Biochim Biophys Acta 172355–62 [CrossRef]
    [Google Scholar]
  11. Ikeda M, Katsumata R. 1998; A novel system with positive selection for the chromosomal integration of replicative plasmid DNA in Corynebacterium glutamicum . Microbiology 144:1863–1868 [CrossRef]
    [Google Scholar]
  12. Ikeda M, Nakagawa S. 2003; The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109 [CrossRef]
    [Google Scholar]
  13. Kalinowski J, Bathe B, Bartels D. 24 other authors 2003; The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25 [CrossRef]
    [Google Scholar]
  14. Koizumi S, Yonetani Y, Maruyama A, Teshiba S. 2000; Production of riboflavin by metabolically engineered Corynebacterium ammoniagenes . Appl Microbiol Biotechnol 53:674–679 [CrossRef]
    [Google Scholar]
  15. Koszalka G. W, Vanhooke J, Short S. A, Hall W. W. 1988; Purification and properties of inosine-guanosine phosphorylase from Escherichia coli K-12. J Bacteriol 170:3493–3498
    [Google Scholar]
  16. Krenitsky T. A, Tuttle J. V, Koszalka G. W, Chen I. S, Beacham L. M., 3rd, Rideout J. L, Elion G. B. 1976; Deoxycytidine kinase from calf thymus. Substrate and inhibitor specificity. J Biol Chem 251:4055–4061
    [Google Scholar]
  17. Krenitsky T. A, Koszalka G. W, Tuttle J. V. 1981; Purine nucleoside synthesis, an efficient method employing nucleoside phosphorylases. Biochemistry 20:3615–3621 [CrossRef]
    [Google Scholar]
  18. Kurtz J. E, Exinger F, Erbs P, Jund R. 2002; The URH1 uridine ribohydrolase of Saccharomyces cerevisiae . Curr Genet 41:132–141 [CrossRef]
    [Google Scholar]
  19. Ling F, Inoue Y, Kimura A. 1990; Purification and characterization of a novel nucleoside phosphorylase from a Klebsiella sp. and its use in the enzymatic production of adenine arabinoside. Appl Environ Microbiol 56:3830–3834
    [Google Scholar]
  20. Miles R. W, Tyler P. C, Evan G. B, Furneax R. H, Parkin D. W, Schramm V. L. 1999; Iminoribitol transition state analogue inhibitors of protozoan nucleoside hydrolases. Biochemistry 38:13147–13154 [CrossRef]
    [Google Scholar]
  21. Mitterbauer R, Karl T, Adam G. 2002; Saccharomyces cerevisiae URH1 (encoding uridine-cytidine N -ribohydrolase): functional complementation by a nucleoside hydrolase from a protozoan parasite and by a mammalian uridine phosphorylase. Appl Environ Microbiol 68:1336–1343 [CrossRef]
    [Google Scholar]
  22. Mori H, Iida A, Teshiba S, Fujio T. 1995; Cloning of a guanosine-inosine kinase gene of Escherichia coli and characterization of the purified gene product. J Bacteriol 177:4921–4926
    [Google Scholar]
  23. Noguchi Y, Shimba N, Kawahara Y, Suzuki E.-I, Sugimoto S. 2003; [sup]31[/sup]P NMR studies of energy metabolism in xanthosine-5′-monophosphate overproducing Corynebacterium ammoniagenes . Eur J Biochem 270:2622–2626 [CrossRef]
    [Google Scholar]
  24. Ohshima H, Matsuoka S, Asai K, Sadaie Y. 2002; Molecular organization of intrinsic restriction and modification genes BsuM of Bacillus subtilis Marburg. J Bacteriol 184:381–389 [CrossRef]
    [Google Scholar]
  25. Parkin D. W. 1996; Purine-specific nucleoside N -ribohydrolase from Trypanosoma brucei brucei . Purification, specificity, and kinetic mechanism. J Biol Chem 271:21713–21719
    [Google Scholar]
  26. Parkin D. W, Horenstein B. A, Abdulah D. R, Estupinaas B, Schramm V. L. 1991; Nucleoside hydrolase from Crithidia fasciculata . Metabolic role, purification, specificity, and kinetic mechanism. J Biol Chem 266:20658–20665
    [Google Scholar]
  27. Peist R, Koch A, Bolek P, Sewitz S, Kolbus T, Boos W. 1997; Characterization of the aes gene of Escherichia coli encoding an enzyme with esterase activity. J Bacteriol 179:7679–7686
    [Google Scholar]
  28. Petersen C, Moller L. B. 2001; The RihA, RihB, and RihC ribonucleoside hydrolase of Escherichia coli . Substrate specificity, gene expression, and regulation. J Biol Chem 276:884–894 [CrossRef]
    [Google Scholar]
  29. Rocchietti S, Ubiali D, Terreni M, Albertini A. M, Fernandez-Lafuente R, Guisan J. M, Pregnolato M. 2004; Immobilization and stabilization of recombinant multimeric uridine and purine nucleoside phosphorylase from Bacillus subtilis . Biomacromolecules 5:2195–2200 [CrossRef]
    [Google Scholar]
  30. Sambrook J, Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Shi W, Schramm V. L, Almo S. C. 1999; Nucleoside hydrolase from Leishmania major . J Biol Chem 274:21114–21120 [CrossRef]
    [Google Scholar]
  32. Stibitz S. 1994; Use of conditionally counterselectable suicide vectors for allelic exchange. Methods Enzymol 235:458–465
    [Google Scholar]
  33. Versees W, Steyaert J. 2003; Catalysis by nucleoside hydrolases. Curr Opin Struct Biol 13:731–738 [CrossRef]
    [Google Scholar]
  34. West T. P. 1988; Metabolism of pyrimidine bases and nucleosides by Pseudomonas fluorescence biotype F. Microbios 56:27–36
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28703-0
Loading
/content/journal/micro/10.1099/mic.0.28703-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error