1887

Abstract

Using a comparative genomics approach, a copper resistance gene cluster has been identified in multiple archaeal genomes. The cluster is predicted to encode a metallochaperone (CopM), a P-type copper-exporting ATPase (CopA) and a novel, archaea-specific transcriptional regulator (CopT) which might control the expression of the genes. Sequence analysis revealed that CopT has an N-terminal DNA-binding helix–turn–helix domain and a C-terminal TRASH domain; TRASH is a novel domain which has recently been proposed to be uniquely involved in metal-binding in sensors, transporters and trafficking proteins in prokaryotes. The present study describes the molecular characterization of the gene cluster in the thermoacidophilic crenarchaeon . The polycistronic transcript was found to accumulate in response to growth-inhibiting copper concentrations, whereas transcript abundance appeared to be constitutive. DNA-binding assays revealed that CopT binds to the promoter at multiple sites, both upstream and downstream of the predicted TATA-BRE site. Copper was found to specifically modulate the affinity of DNA binding by CopT. This study describes a copper-responsive operon in archaea, a new family of archaeal DNA-binding proteins, and supports the idea that this domain plays a prominent role in the archaeal copper response. A model is proposed for copper-responsive transcriptional regulation of the gene cluster.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28724-0
2006-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/7/1969.html?itemId=/content/journal/micro/10.1099/mic.0.28724-0&mimeType=html&fmt=ahah

References

  1. Ahmed H, Ettema T. J, Tjaden B, Geerling A. C, Siebers B, van der Oost J. 2005; The semi-phosphorylative Entner–Doudoroff pathway in hyperthermophilic archaea: a re-evaluation. Biochem J 390:539–540
    [Google Scholar]
  2. Aravind L, Koonin E. V. 1999; DNA-binding proteins and evolution of transcription regulation in the archaea. Nucleic Acids Res 27:4658–4670 [CrossRef]
    [Google Scholar]
  3. Baker-Austin C, Dopson M, Wexler M, Sawers R. G, Bond P. L. 2005; Molecular insight into extreme copper resistance in the extremophilic archaeon ‘ Ferroplasma acidarmanus ’ Fer1. Microbiology 151:2637–2646 [CrossRef]
    [Google Scholar]
  4. Bell S. D. 2005; Archaeal transcriptional regulation – variation on a bacterial theme?. Trends Microbiol 13:262–265 [CrossRef]
    [Google Scholar]
  5. Bell S. D, Cairns S. S, Robson R. L, Jackson S. P. 1999a; Transcriptional regulation of an archaeal operon in vivo and in vitro . Mol Cell 4:971–982 [CrossRef]
    [Google Scholar]
  6. Bell S. D, Kosa P. L, Sigler P. B, Jackson S. P. 1999b; Orientation of the transcription preinitiation complex in archaea. Proc Natl Acad Sci U S A 96:13662–13667 [CrossRef]
    [Google Scholar]
  7. Blindauer C. A, Harrison M. D, Robinson A. K, Parkinson J. A, Bowness P. W, Sadler P. J, Robinson N. J. 2002; Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol Microbiol 45:1421–1432 [CrossRef]
    [Google Scholar]
  8. Brinkman A. B, Dahlke I, Tuininga J. E. 7 other authors 2000; An Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus is negatively autoregulated. J Biol Chem 275:38160–38169 [CrossRef]
    [Google Scholar]
  9. Brinkman A. B, Bell S. D, Lebbink R. J, de Vos W. M, van der Oost J. 2002; The Sulfolobus solfataricus Lrp-like protein LysM regulates lysine biosynthesis in response to lysine availability. J Biol Chem 277:29537–29549 [CrossRef]
    [Google Scholar]
  10. Brinkman A. B, Ettema T. J, de Vos W. M, van der Oost J. 2003; The Lrp family of transcriptional regulators. Mol Microbiol 48:287–294 [CrossRef]
    [Google Scholar]
  11. Brown N. L, Stoyanov J. V, Kidd S. P, Hobman J. L. 2003; The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163 [CrossRef]
    [Google Scholar]
  12. Busenlehner L. S, Pennella M. A, Giedroc D. P. 2003; The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev 27:131–143 [CrossRef]
    [Google Scholar]
  13. Camakaris J, Voskoboinik I, Mercer J. F. 1999; Molecular mechanisms of copper homeostasis. Biochem Biophys Res Commun 261:225–232 [CrossRef]
    [Google Scholar]
  14. Cavet J. S, Borrelly G. P, Robinson N. J. 2003; Zn, Cu and Co in cyanobacteria: selective control of metal availability. FEMS Microbiol Rev 27:165–181 [CrossRef]
    [Google Scholar]
  15. Cobine P, Wickramasinghe W. A, Harrison M. D, Weber T, Solioz M, Dameron C. T. 1999; The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett 445:27–30 [CrossRef]
    [Google Scholar]
  16. Cobine P. A, George G. N, Jones C. E, Wickramasinghe W. A, Solioz M, Dameron C. T. 2002a; Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions. Biochemistry 41:5822–5829 [CrossRef]
    [Google Scholar]
  17. Cobine P. A, Jones C. E, Dameron C. T. 2002b; Role for zinc(II) in the copper(I) regulated protein CopY. J Inorg Biochem 88:192–196 [CrossRef]
    [Google Scholar]
  18. Degtyarenko K. 2000; Bioinorganic motifs: towards functional classification of metalloproteins. Bioinformatics 16:851–864 [CrossRef]
    [Google Scholar]
  19. Dixit V, Bini E, Drozda M, Blum P. 2004; Mercury inactivates transcription and the generalized transcription factor TFB in the archaeon Sulfolobus solfataricus . Antimicrob Agents Chemother 48:1993–1999 [CrossRef]
    [Google Scholar]
  20. Edwards K. J, Bond P. L, Gihring T. M, Banfield J. F. 2000; An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799 [CrossRef]
    [Google Scholar]
  21. Ettema T. J, Brinkman A. B, Tani T. H, Rafferty J. B, Van Der Oost J. 2002; A novel ligand-binding domain involved in regulation of amino acid metabolism in prokaryotes. J Biol Chem 277:37464–37468 [CrossRef]
    [Google Scholar]
  22. Ettema T. J, Huynen M. A, de Vos W. M, van der Oost J. 2003; TRASH: a novel metal-binding domain predicted to be involved in heavy-metal sensing, trafficking and resistance. Trends Biochem Sci 28:170–173 [CrossRef]
    [Google Scholar]
  23. Gregor D, Pfeifer F. 2001; Use of a halobacterial bgaH reporter gene to analyse the regulation of gene expression in halophilic archaea. Microbiology 147:1745–1754
    [Google Scholar]
  24. Grogan D. W. 1989; Phenotypic characterization of the archaebacterial genus Sulfolobus : comparison of five wild-type strains. J Bacteriol 171:6710–6719
    [Google Scholar]
  25. Guedon E, Helmann J. D. 2003; Origins of metal ion selectivity in the DtxR/MntR family of metalloregulators. Mol Microbiol 48:495–506 [CrossRef]
    [Google Scholar]
  26. Hamza I, Schaefer M, Klomp L. W, Gitlin J. D. 1999; Interaction of the copper chaperone HAH1 with the Wilson disease protein is essential for copper homeostasis. Proc Natl Acad Sci U S A 96:13363–13368 [CrossRef]
    [Google Scholar]
  27. Harrison M. D, Jones C. E, Solioz M, Dameron C. T. 2000; Intracellular copper routing: the role of copper chaperones. Trends Biochem Sci 25:29–32 [CrossRef]
    [Google Scholar]
  28. Hochheimer A, Hedderich R, Thauer R. K. 1999; The DNA binding protein Tfx from Methanobacterium thermoautotrophicum : structure, DNA binding properties and transcriptional regulation. Mol Microbiol 31:641–650 [CrossRef]
    [Google Scholar]
  29. Hung I. H, Casareno R. L, Labesse G, Mathews F. S, Gitlin J. D. 1998; HAH1 is a copper-binding protein with distinct amino acid residues mediating copper homeostasis and antioxidant defense. J Biol Chem 273:1749–1754 [CrossRef]
    [Google Scholar]
  30. Letunic I, Copley R. R, Schmidt S, Ciccarelli F. D, Doerks T, Schultz J, Ponting C. P, Bork P. 2004; smart 4.0: towards genomic data integration. Nucleic Acids Res 32:D142–D144 [CrossRef]
    [Google Scholar]
  31. Lutsenko S, Kaplan J. H. 1996; P-type ATPases. Trends Biochem Sci 21:467 [CrossRef]
    [Google Scholar]
  32. Mana-Capelli S, Mandal A. K, Arguello J. M. 2003; Archaeoglobus fulgidus CopB is a thermophilic Cu[sup]2+[/sup]-ATPase: functional role of its histidine-rich-N-terminal metal binding domain. J Biol Chem 278:40534–40541 [CrossRef]
    [Google Scholar]
  33. Mercer J. F. 2001; The molecular basis of copper-transport diseases. Trends Mol Med 7:64–69 [CrossRef]
    [Google Scholar]
  34. Multhaup G, Strausak D, Bissig K. D, Solioz M. 2001; Interaction of the CopZ copper chaperone with the CopA copper ATPase of Enterococcus hirae assessed by surface plasmon resonance. Biochem Biophys Res Commun 288:172–177 [CrossRef]
    [Google Scholar]
  35. Nies D. H. 1999; Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750 [CrossRef]
    [Google Scholar]
  36. Ouhammouch M, Dewhurst R. E, Hausner W, Thomm M, Geiduschek E. P. 2003; Activation of archaeal transcription by recruitment of the TATA-binding protein. Proc Natl Acad Sci U S A 100:5097–5102 [CrossRef]
    [Google Scholar]
  37. Outten F. W, Outten C. E, Hale J, O'Halloran T. V. 2000; Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR. J Biol Chem 275:31024–31029 [CrossRef]
    [Google Scholar]
  38. Rosenzweig A. C. 2002; Metallochaperones: bind and deliver. Chem Biol 9:673–677 [CrossRef]
    [Google Scholar]
  39. Schelert J, Dixit V, Hoang V, Simbahan J, Drozda M, Blum P. 2004; Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. J Bacteriol 186:427–437 [CrossRef]
    [Google Scholar]
  40. Stoyanov J. V, Hobman J. L, Brown N. L. 2001; CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol 39:502–511 [CrossRef]
    [Google Scholar]
  41. Strausak D, Solioz M. 1997; CopY is a copper-inducible repressor of the Enterococcus hirae copper ATPases. J Biol Chem 272:8932–8936 [CrossRef]
    [Google Scholar]
  42. Thompson J. D, Higgins D. G, Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  43. Tottey S, Rondet S. A, Borrelly G. P, Robinson P. J, Rich P. R, Robinson N. J. 2002; A copper metallochaperone for photosynthesis and respiration reveals metal-specific targets, interaction with an importer, and alternative sites for copper acquisition. J Biol Chem 277:5490–5497 [CrossRef]
    [Google Scholar]
  44. Walker J. M, Tsivkovskii R, Lutsenko S. 2002; Metallochaperone Atox1 transfers copper to the NH[sub]2[/sub]-terminal domain of the Wilson's disease protein and regulates its catalytic activity. J Biol Chem 277:27953–27959 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28724-0
Loading
/content/journal/micro/10.1099/mic.0.28724-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error