1887

Abstract

Enolase represents one of the anchorless surface proteins of and has previously been identified as a plasminogen-binding protein, endowing this pathogen with host proteolytic activity. In this study the mAb 245,C-6 (IgG1) was produced in a BALB/c mouse after immunizing with a protein fraction from . The mAb reacted with recombinant pneumococcal enolase both under non-denaturing and denaturing conditions. The epitope for the mAb was mapped to residues DKSRYGGLG of pneumococcal enolase using a peptide array. By applying the previously reported structure of enolase, this epitope was localized in a surface-exposed loop in each of the monomers of the octameric enolase. Previous immunoelectron microscopic studies, using polyclonal rabbit antibodies against enolase, depicted enolase on the cell surface but did not quantify the amount of surface-exposed enolase on viable pneumococci. Here, flow cytometry revealed no binding of mAb 245,C-6 to viable pneumococci, including TIGR4 and its non-encapsulated isogenic mutant, and only a minor increase of fluorescence intensity was measured when the polyclonal anti-enolase antibodies were used. In contrast, control antibodies recognizing the choline-binding proteins (CBPs) PspA and PspC showed high reactivities. The non-encapsulated TIGR4 did not show increased levels of antibody binding for mAb 245,C-6 or polyclonal anti-enolase antibodies, but revealed increased binding of polyclonal antibodies reacting with PspA or PspC. These results suggest that, compared to other surface-exposed proteins such as CBPs, the amount of enolase under the selected conditions is low. Flow cytometry, however, with FITC-labelled plasminogen demonstrated that the amount of surface-exposed enolase is important for plasminogen binding and, therefore, is also important for pneumococcal pathogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28747-0
2006-05-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/5/1307.html?itemId=/content/journal/micro/10.1099/mic.0.28747-0&mimeType=html&fmt=ahah

References

  1. Adrian P. V., Bogaert D., Oprins M., Rapola S., Lahdenkari M., Kilpi T., Kayhty H., Hermans P. W, de Groot R. 2004; Development of antibodies against pneumococcal proteins alpha-enolase, immunoglobulin A1 protease, streptococcal lipoprotein rotamase A, and putative proteinase maturation protein A in relation to pneumococcal carriage and otitis media. Vaccine 22:2737–2742 [CrossRef]
    [Google Scholar]
  2. Bergmann S., Rohde M., Chhatwal G. S., Hammerschmidt S. 2001; alpha-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 40:1273–1287 [CrossRef]
    [Google Scholar]
  3. Bergmann S., Wild D., Diekmann O., Frank R., Bracht D., Chhatwal G. S., Hammerschmidt S. 2003; Identification of a novel plasmin(ogen)-binding motif in surface displayed alpha-enolase of Streptococcus pneumoniae . Mol Microbiol 49:411–423 [CrossRef]
    [Google Scholar]
  4. Bergmann S., Rohde M., Chhatwal G. S., Hammerschmidt S. 2004a; Characterization of plasmin(ogen) binding to Streptococcus pneumoniae . Indian J Med Res 119:29–32
    [Google Scholar]
  5. Bergmann S., Rohde M., Hammerschmidt S. 2004b; Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogen-binding protein. Infect Immun 72:2416–2419 [CrossRef]
    [Google Scholar]
  6. Bergmann S., Rohde M., Preissner K. T., Hammerschmidt S. 2005; The nine residue plasminogen-binding motif of the pneumococcal enolase is the major cofactor of plasmin-mediated degradation of extracellular matrix, dissolution of fibrin and transmigration. Thromb Haemost 94:304–311
    [Google Scholar]
  7. Bernal D., Carrasco-Abad A. M., Toledo R., Mas-Coma S., Marcilla A, de la Rubia J. E. 2004; Identification of enolase as a plasminogen-binding protein in excretory-secretory products of Fasciola hepatica . FEBS Lett 563:203–206 [CrossRef]
    [Google Scholar]
  8. Boyle M. D., Lottenberg R. 1997; Plasminogen activation by invasive human pathogens. Thromb Haemost 77:1–10
    [Google Scholar]
  9. Brooks-Walter A., Briles D. E., Hollingshead S. K. 1999; The pspC gene of Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect Immun 67:6533–6542
    [Google Scholar]
  10. Cundell D. R., Gerard N. P., Gerard C., Idanpaan-Heikkila I., Tuomanen E. I. 1995; Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377:435–438 [CrossRef]
    [Google Scholar]
  11. Dave S., Carmicle S., Hammerschmidt S., Pangburn M. K., McDaniel L. S. 2004; Dual roles of PspC, a surface protein of Streptococcus pneumoniae , in binding human secretory IgA and factor H. J Immunol 173:471–477 [CrossRef]
    [Google Scholar]
  12. D'Costa S. S., Romer T. G., Boyle M. D. 2000; Analysis of expression of a cytosolic enzyme on the surface of Streptococcus pyogenes . Biochem Biophys Res Commun 278:826–832 [CrossRef]
    [Google Scholar]
  13. Derbise A., Song Y. P., Parikh S., Fischetti V. A., Pancholi V. 2004; Role of the C-terminal lysine residues of streptococcal surface enolase in Glu- and Lys-plasminogen-binding activities of group A streptococci. Infect Immun 72:94–105 [CrossRef]
    [Google Scholar]
  14. Eberhard T., Kronvall G., Ullberg M. 1999; Surface bound plasmin promotes migration of Streptococcus pneumoniae through reconstituted basement membranes. Microb Pathog 26:175–181 [CrossRef]
    [Google Scholar]
  15. Ehinger S., Schubert W. D., Bergmann S., Hammerschmidt S., Heinz D. W. 2004; Plasmin(ogen)-binding alpha-enolase from Streptococcus pneumoniae : crystal structure and evaluation of plasmin(ogen)-binding sites. J Mol Biol 343:997–1005 [CrossRef]
    [Google Scholar]
  16. Elm C., Braathen R., Bergmann S., Frank R., Vaerman J. P., Kaetzel C. S., Chhatwal G. S., Johansen F. E., Hammerschmidt S. 2004; Ectodomains 3 and 4 of human polymeric Immunoglobulin receptor (hpIgR) mediate invasion of Streptococcus pneumoniae into the epithelium. J Biol Chem 279:6296–6304
    [Google Scholar]
  17. Fontan P. A., Pancholi V., Nociari M. M., Fischetti V. A. 2000; Antibodies to streptococcal surface enolase react with human alpha-enolase: implications in poststreptococcal sequelae. J Infect Dis 182:1712–1721 [CrossRef]
    [Google Scholar]
  18. Ge J., Catt D. M., Gregory R. L. 2004; Streptococcus mutans surface alpha-enolase binds salivary mucin MG2 and human plasminogen. Infect Immun 72:6748–6752 [CrossRef]
    [Google Scholar]
  19. Gor D. O., Ding X., Briles D. E., Jacobs M. R., Greenspan N. S. 2005; Relationship between surface accessibility for PpmA, PsaA, and PspA and antibody-mediated immunity to systemic infection by Streptococcus pneumoniae . Infect Immun 73:1304–1312 [CrossRef]
    [Google Scholar]
  20. Guiral S., Mitchell T. J., Martin B., Claverys J. P. 2005; Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae : genetic requirements. Proc Natl Acad Sci U S A 102:8710–8715 [CrossRef]
    [Google Scholar]
  21. Hammerschmidt S., Talay S. R., Brandtzaeg P., Chhatwal G. S. 1997; SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol Microbiol 25:1113–1124 [CrossRef]
    [Google Scholar]
  22. Hammerschmidt S., Tillig M. P., Wolff S., Vaerman J. P., Chhatwal G. S. 2000; Species-specific binding of human secretory component to SpsA protein of Streptococcus pneumoniae via a hexapeptide motif. Mol Microbiol 36:726–736
    [Google Scholar]
  23. Hammerschmidt S., Wolff S., Hocke A., Rosseau S., Muller E., Rohde M. 2005; Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect Immun 73:4653–4667 [CrossRef]
    [Google Scholar]
  24. Hollingshead S. K., Becker R., Briles D. E. 2000; Diversity of PspA: mosaic genes and evidence for past recombination in Streptococcus pneumoniae . Infect Immun 68:5889–5900 [CrossRef]
    [Google Scholar]
  25. Hughes M. J., Moore J. C., Lane J. D. 13 other authors 2002; Identification of major outer surface proteins of Streptococcus agalactiae . Infect Immun 70:1254–1259 [CrossRef]
    [Google Scholar]
  26. Janulczyk R., Iannelli F., Sjoholm A. G., Pozzi G., Bjorck L. 2000; Hic, a novel surface protein of Streptococcus pneumoniae that interferes with complement function. J Biol Chem 275:37257–37263 [CrossRef]
    [Google Scholar]
  27. Jobin M. C., Brassard J., Quessy S., Gottschalk M., Grenier D. 2004; Acquisition of host plasmin activity by the Swine pathogen Streptococcus suis serotype. Infect Immun 72:606–610 [CrossRef]
    [Google Scholar]
  28. Jolodar A., Fischer P., Bergmann S., Buttner D. W., Hammerschmidt S., Brattig N. W. 2003; Molecular cloning of an alpha-enolase from the human filarial parasite Onchocerca volvulus that binds human plasminogen. Biochim Biophys Acta 1627111–120 [CrossRef]
    [Google Scholar]
  29. Jong A. Y., Chen S. H., Stins M. F., Kim K. S., Tuan T. L., Huang S. H. 2003; Binding of Candida albicans enolase to plasmin(ogen) results in enhanced invasion of human brain microvascular endothelial cells. J Med Microbiol 52:615–622 [CrossRef]
    [Google Scholar]
  30. Kolberg J., Jones C. 1998; Monoclonal antibodies with specificities for Streptococcus pneumoniae group 9 capsular polysaccharides. FEMS Immunol Med Microbiol 20:249–255 [CrossRef]
    [Google Scholar]
  31. Kolberg J., Sletten K. 1996; Monoclonal antibodies that recognize a common pneumococcal protein with similarities to streptococcal group A surface glyceraldehyde-3-phosphate dehydrogenase. Infect Immun 64:3544–3547
    [Google Scholar]
  32. Kolberg J., Hoiby E. A., Jantzen E. 1997a; Detection of the phosphorylcholine epitope in streptococci, Haemophilus and pathogenic Neisseriae by immunoblotting. Microb Pathog 22:321–329 [CrossRef]
    [Google Scholar]
  33. Kolberg J., Hoiby E. A., Lopez R., Sletten K. 1997b; Monoclonal antibodies against Streptococcus pneumoniae detect epitopes on eubacterial ribosomal proteins L7/L12 and on streptococcal elongation factor Ts. Microbiology 143:55–61 [CrossRef]
    [Google Scholar]
  34. Kolberg J., Hoiby E. A., Aase A., Sletten K., Rodal G., Michaelsen T. E., Bucher A. 2000; Streptococcus pneumoniae heat shock protein 70 does not induce human antibody responses during infection. FEMS Immunol Med Microbiol 29:289–294 [CrossRef]
    [Google Scholar]
  35. Kolberg J., Aase A., Michaelsen T. E., Rodal G. 2001; Epitope analyses of pneumococcal surface protein A: a combination of two monoclonal antibodies detects 94% of clinical isolates. FEMS Immunol Med Microbiol 31:175–180 [CrossRef]
    [Google Scholar]
  36. Kolberg J., Aase A., Rodal G., Littlejohn J. E., Jedrzejas M. J. 2003; Epitope mapping of pneumococcal surface protein A of strain Rx1 using monoclonal antibodies and molecular structure modelling. FEMS Immunol Med Microbiol 39:265–273 [CrossRef]
    [Google Scholar]
  37. Lenz L. L., Mohammadi S., Geissler A., Portnoy D. A. 2003; SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc Natl Acad Sci U S A 100:12432–12437 [CrossRef]
    [Google Scholar]
  38. Ling E., Feldman G., Portnoi M., Dagan R., Overweg K., Mulholland F., Chalifa-Caspi V., Wells J., Mizrachi-Nebenzahl Y. 2004; Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse. Clin Exp Immunol 138:290–298 [CrossRef]
    [Google Scholar]
  39. Lopez-Alemany R., Correc P., Camoin L., Burtin P. 1994; Purification of the plasmin receptor from human carcinoma cells and comparison to alpha-enolase. Thromb Res 75:371–381 [CrossRef]
    [Google Scholar]
  40. Lopez-Alemany R., Longstaff C., Hawley S., Mirshahi M., Fabregas P., Jardi M., Merton E., Miles L. A., Felez J. 2003; Inhibition of cell surface mediated plasminogen activation by a monoclonal antibody against alpha-Enolase. Am J Hematol 72:234–242 [CrossRef]
    [Google Scholar]
  41. Marra A., Asundi J., Bartilson M. 7 other authors 2002; Differential fluorescence induction analysis of Streptococcus pneumoniae identifies genes involved in pathogenesis. Infect Immun 70:1422–1433 [CrossRef]
    [Google Scholar]
  42. Michaelsen T. E., Aase A., Kolberg J., Wedge E., Rosenqvist E. 2001; PorB3 outer membrane protein on Neisseria meningitidis is poorly accessible for antibody binding on live bacteria. Vaccine 19:1526–1533 [CrossRef]
    [Google Scholar]
  43. Murphy P. M. 1993; Molecular mimicry and the generation of host defense protein diversity. Cell 72:823–826 [CrossRef]
    [Google Scholar]
  44. Orihuela C. J., Radin J. N., Sublett J. E., Gao G., Kaushal D., Tuomanen E. I. 2004; Microarray analysis of pneumococcal gene expression during invasive disease. Infect Immun 72:5582–5596 [CrossRef]
    [Google Scholar]
  45. Pancholi V. 2001; Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci 58:902–920 [CrossRef]
    [Google Scholar]
  46. Pancholi V., Chhatwal G. S. 2003; Housekeeping enzymes as virulence factors for pathogens. Int J Med Microbiol 293:391–401 [CrossRef]
    [Google Scholar]
  47. Pancholi V., Fischetti V. A. 1992; A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med 176:415–426 [CrossRef]
    [Google Scholar]
  48. Pancholi V., Fischetti V. A. 1998; Alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem 273:14503–14515 [CrossRef]
    [Google Scholar]
  49. Pearce B. J., Iannelli F., Pozzi G. 2002; Construction of new unencapsulated (rough) strains of Streptococcus pneumoniae . Res Microbiol 153:243–247 [CrossRef]
    [Google Scholar]
  50. Poolman J. T. 2004; Pneumococcal vaccine development. Expert Rev Vaccines 3:597–604 [CrossRef]
    [Google Scholar]
  51. Rosenow C., Ryan P., Weiser J. N., Johnson S., Fontan P., Ortqvist A., Masure H. R. 1997; Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae . Mol Microbiol 25:819–829 [CrossRef]
    [Google Scholar]
  52. Schaumburg J., Diekmann O., Hagendorff P., Bergmann S., Rohde M., Hammerschmidt S., Jansch L., Wehland J., Karst U. 2004; The cell wall subproteome of Listeria monocytogenes . Proteomics 4:2991–3006 [CrossRef]
    [Google Scholar]
  53. Shaper M., Hollingshead S. K., Briles D. E, Benjamin W. H. Jr 2004; PspA protects Streptococcus pneumoniae from killing by apolactoferrin, and antibody to PspA enhances killing of pneumococci by apolactoferrin. Infect Immun 72:5031–5040 [CrossRef]
    [Google Scholar]
  54. Tiraby J. G., Fox M. S. 1973; Marker discrimination in transformation and mutation of pneumococcus. Proc Natl Acad Sci U S A 70:3541–3545 [CrossRef]
    [Google Scholar]
  55. Weiser J. N. 1998; Phase variation in colony opacity by Streptococcus pneumoniae . Microb Drug Resist 4:129–135 [CrossRef]
    [Google Scholar]
  56. Whiting G. C., Evans J. T., Patel S., Gillespie S. H. 2002; Purification of native alpha-enolase from Streptococcus pneumoniae that binds plasminogen and is immunogenic. J Med Microbiol 51:837–843
    [Google Scholar]
  57. Zhang J. R., Mostov K. E., Lamm M. E., Nanno M., Shimida S., Ohwaki M., Tuomanen E. 2000; The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102:827–837 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28747-0
Loading
/content/journal/micro/10.1099/mic.0.28747-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error