1887

Abstract

strains responsible for causing the plant disease head blight vary greatly in their ability to cause disease and produce mycotoxins on wheat. With the goal of understanding fungal gene expression related to pathogenicity, three cDNA libraries were created by suppression subtractive hybridization using wheat heads inoculated with a highly aggressive strain and either water or a less aggressive strain of this pathogen. Eighty-four fungal genes expressed during initial disease development were identified. The probable functions of 49 of these genes could be inferred by bioinformatic analysis. Thirty-five ESTs had no known homologues in current databases and were not identified by gene prediction methods. These ESTs from infected wheat heads probably represent genes that previously were not annotated. Four genes represented in one of these libraries were selected for targeted gene replacement, leading to the characterization of a two-component response regulator homologue involved in pathogenicity of the fungus. The mutants for this gene showed reduced sporulation and delayed spread of head blight on wheat.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28750-0
2006-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/6/1877.html?itemId=/content/journal/micro/10.1099/mic.0.28750-0&mimeType=html&fmt=ahah

References

  1. Balhadère P. V, Foster A. J, Talbot N. J. 1999; Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis. Mol Plant Microbe Interact 12:129–142 [CrossRef]
    [Google Scholar]
  2. Beyer K, Jimenez S. J, Randall T. A, Lam S, Binder A, Boller T, Collinge M. A. 2002; Characterization of Phytophthora infestans genes regulated during the interaction with potato. Molecular Plant Pathology 3:473–485 [CrossRef]
    [Google Scholar]
  3. Bittner-Eddy P. D, Allen R. L, Rehmany A. P, Birch P, Beynon J. L. 2003; Use of suppression subtractive hybridization to identify downy mildew genes expressed during infection of Arabidopsis thaliana . Mol Plant Pathol 4:501–507 [CrossRef]
    [Google Scholar]
  4. Borkovich K. A, Alex L. A, Yarden O. 36 other authors 2004; Lessons from the genome sequence of Neurospora crassa : tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68:1–108 [CrossRef]
    [Google Scholar]
  5. Catlett N. L, Lee B. N, Yoder O. C, Turgeon B. G. 2003a; Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet Newsl 50:9–11
    [Google Scholar]
  6. Catlett N. L, Yoder O. C, Turgeon B. G. 2003b; Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 2:1151–1161 [CrossRef]
    [Google Scholar]
  7. Clemons K. V, Miller T. K, Selitrennikoff C. P, Stevens D. A. 2002; fos -1, a putative histidine kinase as a virulence factor for systemic aspergillosis. Med Mycol 40:259–262
    [Google Scholar]
  8. Cramer R. A, Lawrence C. B. 2004; Identification of Alternaria brassicicola genes expressed in planta during pathogenesis of Arabidopsis thaliana . Fungal Genet Biol 41:115–128 [CrossRef]
    [Google Scholar]
  9. Dean R. A, Talbot N. J, Ebbole D. J. 32 other authors 2005; The genome sequence of the rice blast fungus Magnaporthe grisea . Nature 434:980–986 [CrossRef]
    [Google Scholar]
  10. Diatchenko L, Lau Y. F, Campbell A. P. 8 other authors 1996; Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 93:6025–6030 [CrossRef]
    [Google Scholar]
  11. Evans C. K, Xie W, Dill-Macky R, Mirocha C. J. 2000; Biosynthesis of deoxynivalenol in spikelets of barley inoculated with macroconidia of Fusarium graminearum . Plant Dis 84:654–660 [CrossRef]
    [Google Scholar]
  12. Fleissner A, Sopalla C, Weltring K. M. 2002; An ATP-binding cassette multidrug-resistance transporter is necessary for tolerance of Gibberella pulicaris to phytoalexins and virulence on potato tubers. Mol Plant Microbe Interact 15:102–108 [CrossRef]
    [Google Scholar]
  13. Gaffoor I, Brown D. W, Plattner R, Proctor R. H, Qi W, Trail F. 2005; Functional analysis of the polyketide synthase genes in the filamentous fungus Gibberella zeae (Anamorph Fusarium graminearum ). Eukaryot Cell 4:1926–1933 [CrossRef]
    [Google Scholar]
  14. Galagan J. E, Calvo S. E, Borkovich K. A. 74 other authors 2003; The genome sequence of the filamentous fungus Neurospora crassa . Nature 422:859–868 [CrossRef]
    [Google Scholar]
  15. Gale L. R, Bryant J, Calvo S. 8 other authors 2005; Chromosome complement of the fungal plant pathogen Fusarium graminearum based on genetic and physical mapping and cytological observations. Genetics 171:985–1001 [CrossRef]
    [Google Scholar]
  16. Goswami R. S, Kistler H. C. 2004; Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525 [CrossRef]
    [Google Scholar]
  17. Goswami R. S, Kistler H. C. 2005; Pathogenicity and in planta mycotoxin accumulation among members of the Fusarium graminearum species complex on wheat and rice. Phytopathology 95:1397–1404 [CrossRef]
    [Google Scholar]
  18. Guilleroux M, Osbourn A. 2004; Gene expression during infection of wheat roots by the ‘take-all’ fungus Gaeumannomyces graminis . Mol Plant Pathol 5:203–216 [CrossRef]
    [Google Scholar]
  19. Güldener U, Mannhaupt G, Haase D, Oesterheld M, Mewes H. W, Adam G, Münsterkötter M, Stümpflen V. 2006a; FGDB: a comprehensive fungal genome resource on the plant pathogen Fusarium graminearum . Nucleic Acids Res 34:D456–D458 [CrossRef]
    [Google Scholar]
  20. Güldener U, Seong K, Boddu J. 7 other authors 2006b; Development of a Fusarium graminearum Affymetrix GeneChip for profiling fungal gene expression in vitro and in planta . Fungal Genet Biol (in press)
    [Google Scholar]
  21. Hahn M, Neef U, Struck C, Mendgen K, Göttfert M. 1997; A putative amino acid transporter is specifically expressed in haustoria of the rust fungus Uromyces fabae . Mol Plant Microbe Interact 10:438–445 [CrossRef]
    [Google Scholar]
  22. Hou Z. M, Xue C. Y, Peng Y. L, Katan T, Kistler H. C, Xu J. R. 2002; A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol Plant Microbe Interact 15:1119–1127 [CrossRef]
    [Google Scholar]
  23. Huang X. Q, Madan A. 1999; CAP3: a DNA sequence assembly program. Genome Research 9:868–877 [CrossRef]
    [Google Scholar]
  24. Jenczmionka N. J, Maier F. J, Losch A. P, Schafer W. 2003; Mating, conidiation and pathogenicity of Fusarium graminearum , the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Curr Genet 43:87–95
    [Google Scholar]
  25. Kim Y. T, Lee Y. R, Jin J. M, Han K. H, Kim H, Kim J. C, Lee T, Yun S. H, Lee Y. W. 2005; Two different polyketide synthase genes are required for synthesis of zearalenone in Gibberella zeae . Mol Microbiol 58:1102–1113 [CrossRef]
    [Google Scholar]
  26. Kroken S, Glass N. L, Taylor J. W, Yoder O. C, Turgeon B. G. 2003; Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci U S A 100:15670–15675 [CrossRef]
    [Google Scholar]
  27. Kruger W. M, Pritsch C, Chao S. M, Muehlbauer G. J. 2002; Functional and comparative bioinformatic analysis of expressed genes from wheat spikes infected with Fusarium graminearum . Mol Plant Microbe Interact 15:445–455 [CrossRef]
    [Google Scholar]
  28. Lu S. W, Kroken S, Lee B. N, Robbertse B, Churchill A. C. L, Yoder O. C, Turgeon B. G. 2003; A novel class of gene controlling virulence in plant pathogenic ascomycete fungi. Proc Natl Acad Sci U S A 100:5980–5985 [CrossRef]
    [Google Scholar]
  29. Lu G, Jantasuriyarat C, Zhou B, Wang G. L. 2004; Isolation and characterization of novel defense response genes involved in compatible and incompatible interactions between rice and Magnaporthe grisea . Theor Appl Genet 108:525–534 [CrossRef]
    [Google Scholar]
  30. McMullen M, Jones R, Gallenberg D. 1997; Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81:1340–1348 [CrossRef]
    [Google Scholar]
  31. Monteiro-Vitorello C. B, Baidyaroy D, Bell J. A, Hausner G, Fulbright D. W, Bertrand H. 2000; A circular mitochondrial plasmid incites hypovirulence in some strains of Cryphonectria parasitica . Curr Genet 37:242–256 [CrossRef]
    [Google Scholar]
  32. Namiki F, Matsunaga M, Okuda M, Inoue I, Nishi K, Fujita Y, Tsuge T. 2001; Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f.sp. melonis . Mol Plant Microbe Interact 14:580–584 [CrossRef]
    [Google Scholar]
  33. O'Donnell K, Cigelnik E, Nirenberg H. I. 1998; Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90:465–493 [CrossRef]
    [Google Scholar]
  34. O'Donnell K, Kistler H. C, Tacke B. K, Casper H. H. 2000; Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum , the fungus causing wheat scab. Proc Natl Acad Sci U S A 97:7905–7910 [CrossRef]
    [Google Scholar]
  35. O'Donnell K, Ward T. J, Geiser D. M, Kistler H. C, Aoki T. 2004; Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol 41:600–623 [CrossRef]
    [Google Scholar]
  36. Pritsch C, Muehlbauer G. J, Bushnell W. R, Somers D. A, Vance C. P. 2000; Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum . Mol Plant Microbe Interact 13:159–169 [CrossRef]
    [Google Scholar]
  37. Proctor R. H, Hohn T. M, McCormick S. P. 1995; Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe Interact 8:593–601 [CrossRef]
    [Google Scholar]
  38. Rosewich U. L, Pettway R. E, Katan T, Kistler H. C. 1999; Population genetic analysis corroborates the dispersal of Fusarium oxysporum f.sp. radicis-lycopersici from Florida and Europe. Phytopathology 89:623–630 [CrossRef]
    [Google Scholar]
  39. Schoonbeek H, Del Sorbo G, De Waard M. A. 2001; The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Mol Plant Microbe Interact 14:562–571 [CrossRef]
    [Google Scholar]
  40. Selitrennikoff C. P, Alex L, Miller T. K, Clemons K. V, Simon M. I, Stevens D. A. 2001; COS-I, a putative two-component histidine kinase of Candida albicans , is an in vivo virulence factor. Med Mycol 39:69–74 [CrossRef]
    [Google Scholar]
  41. Seong K, Hou Z. M, Tracy M, Kistler H. C, Xu J. R. 2005; Random insertional mutagenesis identifies genes associated with virulence in the wheat scab fungus Fusarium graminearum . Phytopathology 95:744–750 [CrossRef]
    [Google Scholar]
  42. Seong K, Li L, Kistler H. C, Xu J.-R. 2006; Cryptic promoter activity of the HMR1 coding region in the wheat scab fungus Fusarium graminearum . Fungal Genet Biol 43:34–41 [CrossRef]
    [Google Scholar]
  43. Skadsen R. W, Hohn T. A. 2004; Use of Fusarium graminearum transformed with gfp to follow infection patterns in barley and Arabidopsis. Physiol Mol Plant Pathol 64:45–53 [CrossRef]
    [Google Scholar]
  44. Skov J, Lemmens M, Giese H. 2004; Role of a Fusarium culmorum ABC transporter (FcABC1) during infection of wheat and barley. Physiol Mol Plant Pathol 64:245–254 [CrossRef]
    [Google Scholar]
  45. Solomon P. S, Tan K. C, Oliver R. P. 2003; The nutrient supply of pathogenic fungi; a fertile field for study. Molecular Plant Pathology 4:203–210 [CrossRef]
    [Google Scholar]
  46. Stack R. W. 2003; History of Fusarium head blight with emphasis on North America. In Fusarium Head Blight of Wheat and Barley pp  1–34 Edited by Leonard K. J., Bushnell W. R. St Paul, MN: APS Press;
    [Google Scholar]
  47. Stergiopoulos I, Zwiers L. H, De Waard M. A. 2003; The ABC transporter MgAtr4 is a virulence factor of Mycosphaerella graminicola that affects colonization of substomatal cavities in wheat leaves. Mol Plant Microbe Interact 16:689–698 [CrossRef]
    [Google Scholar]
  48. Tag A. G, Garifullina G. F, Peplow A. W, Phillips T. D, Hohn T. M, Beremand M. N, Ake C., Jr. 2001; A novel regulatory gene, Tri10 , controls trichothecene toxin production and gene expression. Appl Environ Microbiol 67:5294–5302 [CrossRef]
    [Google Scholar]
  49. Talbot N. J, Tongue N. 1998; High level expression of the Magnaporthe grisea mitochondrial small sub-unit rRNA during rice leaf colonization and rapid down-regulation prior to the onset of disease symptoms. Physiol Mol Plant Pathol 52:335–352 [CrossRef]
    [Google Scholar]
  50. Trail F, Xu J. R, San Miguel P, Halgren R. G, Kistler H. C. 2003; Analysis of expressed sequence tags from Gibberella zeae (anamorph Fusarium graminearum). Fungal Genet Biol 38:187–197 [CrossRef]
    [Google Scholar]
  51. Urban M, Bhargava T, Hamer J. E. 1999; An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO J 18:512–521 [CrossRef]
    [Google Scholar]
  52. Urban M, Mott E, Farley T, Hammond-Kosack K. 2003; The Fusarium graminearum MAP1 gene is essential for pathogenicity and development of perithecia. Molecular Plant Pathology 4:347–359 [CrossRef]
    [Google Scholar]
  53. Verwoerd T. C, Dekker B. M, Hoekema A. 1989; A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res 17:2362 [CrossRef]
    [Google Scholar]
  54. Voigt C. A, Schafer W, Salomon S. 2005; A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant J 42:364–375 [CrossRef]
    [Google Scholar]
  55. Xiong L. Z, Lee M. W, Qi M, Yang Y. N. 2001; Identification of defense-related rice genes by suppression subtractive hybridization and differential screening. Mol Plant Microbe Interact 14:685–692 [CrossRef]
    [Google Scholar]
  56. Zhao X, Xue C, Kim Y, Xu J. R. 2004; A ligation-PCR approach for generating gene replacement constructs in Magnaporthe grisea . Fungal Genet Newsl 51:17–18
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28750-0
Loading
/content/journal/micro/10.1099/mic.0.28750-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error