1887

Abstract

Bacterial IgA1 proteases share the ability to cleave human IgA1 at the hinge region. Nature has developed this trait along at least five independent evolutionary lineages. To obtain further insight into the phylogeny and function of IgA1 proteases, the nucleotide sequence of the gene that encodes the IgA1 protease was determined from two strains and one strain. Heterologous expression in confirmed that the genes encode human IgA1-cleaving activity. IgA1 proteases from and shared structural features, including a motif typical for zinc-dependent metalloproteases of clan MA(E) family M26 and an N-terminal signal sequence followed by an LPXTG cell-wall-anchor motif and two putative membrane-spanning domains. In addition, they all harboured a repeat region preceding the active site of the protease. In the streptococcal IgA1 proteases, a G5 domain, which has been suggested to bind -acetylglucosamine, was identified. Conservation of these structures in otherwise diverse proteases suggests that they are essential to the biological function of the enzyme. The phylogenetic distribution of homologous genes and conservation of gene order in the gene region in different species, combined with the sequence homologies, strongly suggest that the gene is more ancient in than in , and therefore that the IgA1 protease gene was transferred from to .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28801-0
2006-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/7/2171.html?itemId=/content/journal/micro/10.1099/mic.0.28801-0&mimeType=html&fmt=ahah

References

  1. Bae T, Schneewind O. 2003; The YSIRK-G/S motif of staphylococcal protein A and its role in efficiency of signal peptide processing. J Bacteriol 185:2910–2919 [CrossRef]
    [Google Scholar]
  2. Bateman A, Coin L, Durbin R. 10 other authors 2004; The Pfam protein families database. Nucleic Acids Res 32:D138–D141 [CrossRef]
    [Google Scholar]
  3. Bateman A, Holden M. T. G, Yeats C. 2005; The G5 domain: a potential N-acetylglucosamine recognition domain involved in biofilm formation. Bioinformatics 21:1301–1303 [CrossRef]
    [Google Scholar]
  4. Camilli R, Pettini E, Del Grosso M, Pozzi G, Pantosti A, Oggioni M. R. 2006; Zinc metalloproteinase genes in clinical isolates of Streptococcus pneumoniae : association of the full array with a clonal cluster comprising serotypes 8 and 11A. Microbiology 152:313–321 [CrossRef]
    [Google Scholar]
  5. Chiavolini D, Memmi G, Maggi T, Iannelli F, Pozzi G, Oggioni M. R. 2003; The three extra-cellular zinc metalloproteinases of Streptococcus pneumoniae have a different impact on virulence in mice. BMC Microbiol 3:14 [CrossRef]
    [Google Scholar]
  6. Cserzö M, Wallin E, Simon I, Eloffson A, von Heijne G. 1997; Prediction of transmembrane α -helices in prokaryotic membrane proteins: the dense alignment surface method. Prot Eng 10:673–676 [CrossRef]
    [Google Scholar]
  7. Facklam R, Elliott J. A. 1995; Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci. Clin Microbiol Rev 8:479–495
    [Google Scholar]
  8. Gilbert J. V, Plaut A. G, Wright A. 1991; Analysis of the immunoglobulin A protease gene of Streptococcus sanguis . Infect Immun 59:7–17
    [Google Scholar]
  9. Gilbert J. V, Ramakrishna J. P, Wright A, Plaut A. G. 1993; Streptococcal IgA protease tandem repeat influences antigenicity but not activity. J Dent Res 72:327
    [Google Scholar]
  10. Hakenbeck R, Balmelle N, Weber B, Gardes C, Keck W, de Saizieu A. 2001; Mosaic genes and mosaic chromosomes: intra- and interspecies genomic variation of Streptococcus pneumoniae . Infect Immun 69:2477–2486 [CrossRef]
    [Google Scholar]
  11. Hawley D. K, McClure W. R. 1983; Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11:2237–2255 [CrossRef]
    [Google Scholar]
  12. Hohwy J, Kilian M. 1995; Clonal diversity of the Streptococcus mitis biovar 1 population in the human oral cavity and pharynx. Oral Microbiol Immunol 10:19–25 [CrossRef]
    [Google Scholar]
  13. Hooper N. M. 1994; Families of zinc metalloproteases. FEBS Lett 354:1–6 [CrossRef]
    [Google Scholar]
  14. Hoshino T, Fujiwara T, Kilian M. 2005; Use of phylogenetic and phenotypic analyses to identify nonhemolytic streptococci isolated from bacteremic patients. J Clin Microbiol 43:6073–6085 [CrossRef]
    [Google Scholar]
  15. Kawamura Y, Hou X.-G, Todome Y, Sultana F, Hirose K, Shu S.-E, Ezaki T, Ohkuni H. 1998; Streptococcus peroris sp. nov. and Streptococcus infantis sp. nov.,new members of the Streptococcus mitis group, isolated from human clinical specimens. Int J Syst Bacteriol 48:921–927 [CrossRef]
    [Google Scholar]
  16. Kehoe M. A. 1994; Cell-wall-associated proteins in Gram-positive bacteria. In Bacterial Cell Wall pp  217–261 Edited by Ghuysen J.-M., Hakenbeck R. New York: Elsevier;
    [Google Scholar]
  17. Kilian M, Reinholdt J. 1987; A hypothetical model for the development of invasive infection due to IgA1 protease-producing bacteria. In Recent Advances in Mucosal Immunology , part B pp  1261–1269 Edited by Mestecky J., McGhee J. R., Bienenstock J., Ogra P. L. New York: Plenum;
    [Google Scholar]
  18. Kilian M, Reinholdt J. 2005; Immunoglobulin A1 proteases of pathogenic and commensal bacteria of the respiratory tract. In Colonization of Mucosal Surfaces pp  119–129 Edited by Nataro J. P., Cohen P. S., Mobley H. L. T., Weiser J. N. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Kilian M, Thomsen B, Petersen T. E, Bleeg H. S. 1983; Occurrence and nature of bacterial IgA proteases. Ann N Y Acad Sci 409:612–624 [CrossRef]
    [Google Scholar]
  20. Kilian M, Reinholdt J, Lomholt H, Poulsen K, Frandsen E. V. 1996; Biological significance of IgA1 proteases in bacterial colonization and pathogenesis: critical evaluation of experimental evidence. APMIS 104:321–338 [CrossRef]
    [Google Scholar]
  21. Kosowska K, Reinholdt J, Rasmussen L. K, Sabat A, Potempa J, Kilian M, Poulsen K. 2002; The Clostridium ramosum IgA1 proteinase represents a novel type of metalloendopeptidase. J Biol Chem 277:11987–11994 [CrossRef]
    [Google Scholar]
  22. Kozak M. 1999; Initiation of translation in prokaryotes and eukaryotes. Gene 234:187–208 [CrossRef]
    [Google Scholar]
  23. Kumar S, Tamura K, Nei M. 2004; mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  24. Larsen T. S, Krogh A. 2003; EasyGene – a prokaryotic gene finder that ranks ORFs by statistical significance. BMC Bioinformatics 4:21 [CrossRef]
    [Google Scholar]
  25. Lomholt J, Kilian M. 2000; Immunoglobulin A1 protease activity in Gemella haemolysans . J Clin Microbiol 38:2760–2762
    [Google Scholar]
  26. Navarre W. W, Schneewind O. 1999; Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229
    [Google Scholar]
  27. Nielsen H, Engelbrecht J, Brunak S, von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6 [CrossRef]
    [Google Scholar]
  28. Ochman H, Gerber A. S, Hartl D. L. 1988; Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623
    [Google Scholar]
  29. Oggioni M. R, Memmi G, Maggi T, Chiavolini D, Iannelli F, Pozzi G. 2003; Pneumococcal zinc metalloproteinase ZmpC cleaves human matrix metalloproteinase 9 and is a virulence factor in experimental pneumonia. Mol Microbiol 49:795–805
    [Google Scholar]
  30. Pallen M. J, Lam A. C, Antonio M, Dunbar K. 2001; An embarrassment of sortases – a richness of substrates?. Trends Microbiol 9:97–101 [CrossRef]
    [Google Scholar]
  31. Paster B. J, Boches S. K, Galvin J. L, Ericson R. E, Lau C. N, Levanos V. A, Sahasrabudhe A, Dewhirst F. E. 2001; Bacterial diversity in human subgingival plaque. J Bacteriol 183:3770–3783 [CrossRef]
    [Google Scholar]
  32. Plaut A. G. 1983; The IgA1 proteases of pathogenic bacteria. Annu Rev Microbiol 37:603–622 [CrossRef]
    [Google Scholar]
  33. Polissi A, Pontiggia A, Feger G, Altieri M, Mottl H, Ferrari L, Simon D. 1998; Large-scale identification of virulence genes from Streptococcus pneumoniae . Infect Immun 66:5620–5629
    [Google Scholar]
  34. Poulsen K, Reinholdt J, Kilian M. 1996; Characterization of the Streptococcus pneumoniae immunoglobulin A1 protease gene (iga) and its translation product. Infect Immun 64:3957–3966
    [Google Scholar]
  35. Poulsen K, Reinholdt J, Jespersgaard C, Boye K, Brown T. A, Hauge M, Kilian M. 1998; A comprehensive genetic study of streptococcal immunoglobulin A1 proteases: evidence for recombination within and between species. Infect Immun 66:181–190
    [Google Scholar]
  36. Reinholdt J, Kilian M. 1997; Comparative analysis of immunoglobulin A1 protease activity among bacteria representing different genera, species, and strains. Infect Immun 65:4452–4459
    [Google Scholar]
  37. Reyn A. 1986; Genus Gemella Berger 1960, 253AL. In Bergey's Manual of Systematic Bacteriology vol. 2 pp  1081–1082 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  38. Sambrook J, Fritsch E. F, Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Sutcliffe I. C, Harrington D. J. 2002; Pattern searches for the identification of putative lipoprotein genes in Gram-positive bacterial genomes. Microbiology 148:2065–2077
    [Google Scholar]
  40. Tettelin H, Nelson K. E, Paulsen I. T. 36 other authors 2001; Complete genome sequence of a virulent isolate of Streptococcus pneumoniae . Science 293:498–506 [CrossRef]
    [Google Scholar]
  41. Vallee B. L, Auld D. S. 1990; Active-site zinc ligands and activated H[sub]2[/sub]O of zinc enzymes. Proc Natl Acad Sci U S A 87:220–224 [CrossRef]
    [Google Scholar]
  42. von Heijne G. 1989; Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 341:456–458 [CrossRef]
    [Google Scholar]
  43. Wani J. H, Gilbert J. V, Plaut A. G, Weiser J. N. 1996; Identification, cloning, and sequencing of the immunoglobulin A1 protease gene of Streptococcus pneumoniae . Infect Immun 64:3967–3974
    [Google Scholar]
  44. Weiser J. N, Bae D, Fasching C, Scamurra R. W, Ratner A. J, Janoff E. N. 2003; Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc Natl Acad Sci U S A 100:4215–4220 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28801-0
Loading
/content/journal/micro/10.1099/mic.0.28801-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error