1887

Abstract

The lysine- and arginine-specific gingipains (Kgp, and RgpA and RgpB) are the major proteinases produced by the black-pigmented periodontopathogen . They play a role in degrading host proteins, including haemoglobin, from which is formed the μ-oxo bishaem complex of iron(III) protoporphyrin IX, [Fe(III)PPIX]O, the major haem component of the black pigment. Kgp and RgpA bind haem and haemoglobin via the haemagglutinin-adhesin 2 (HA2) domain, but the role of this domain in the formation of μ-oxo bishaem-containing pigment is not known. UV-visible spectroscopy was used to examine the interaction of iron(III) protoporphyrin IX monomers [Fe(III)PPIX.OH] with recombinant HA2 and purified HRgpA, Kgp and RgpB gingipains. The HA2 domain reacted with Fe(III)PPIX.OH to form μ-oxo bishaem, the presence of which was confirmed by Fourier transform infrared spectroscopy. Both HRgpA and Kgp, but not RgpB, also mediated μ-oxo bishaem formation and aggregation. It is concluded that the Arg- and Lys-gingipains with HA2 haemagglutinin domains may play a crucial role in haem-pigment formation by converting Fe(III)PPIX.OH monomers into [Fe(III)PPIX]O and promoting their aggregation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28835-0
2006-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/6/1839.html?itemId=/content/journal/micro/10.1099/mic.0.28835-0&mimeType=html&fmt=ahah

References

  1. Aduse-Opoku J, Slaney J. M, Rangarajan M, Muir J, Young K. A, Curtis M. A. 1997; The Tla protein of Porphyromonas gingivalis W50: a homolog of the RI protease precursor (PrpRI) is an outer membrane receptor required for growth on low levels of hemin. J Bacteriol 179:4778–4788
    [Google Scholar]
  2. Beaven G. H, Chen S.-H, D'Albis A, Gratzer W. B. 1974; A spectroscopic study of the hemin-human-serumalbumin system. Eur J Biochem 41:539–546 [CrossRef]
    [Google Scholar]
  3. Bickel M, Cimasoni G. 1985; The pH of human crevicular fluid measured by a new microanalytical technique. J Periodont Res 20:35–40 [CrossRef]
    [Google Scholar]
  4. Bramanti T. E, Holt S. C. 1993; Hemin uptake in Porphyromonas gingivalis : Omp26 is a hemin-binding protein surface protein. J Bacteriol 175:7413–7420
    [Google Scholar]
  5. Brown S. B, Jones P, Lantzke I. R. 1969; Infrared evidence for an oxo-bridged (Fe-O-Fe) haemin dimer. Nature 223:960–961 [CrossRef]
    [Google Scholar]
  6. Brown S. B, Dean T. C, Jones P. 1970; Aggregation of ferrihaems: dimerization and protolytic equilibria of protoferrihaem and deuteroferrihaem in aqueous solution. Biochem J 117:733–739
    [Google Scholar]
  7. Brown S. B, Shillcock M, Jones P. 1976; Equilibrium and kinetic studies of the aggregation of porphyrins in aqueous solution. Biochem J 153:279–285
    [Google Scholar]
  8. Brown S. B, Hatzikonstantinou H, Herries D. G. 1980; The structure of porphyrins and haems in aqueous solution. Int J Biochem 12:701–707 [CrossRef]
    [Google Scholar]
  9. Chen Z, Potempa J, Polanowski A, Wikstrom M, Travis J. 1992; Purification and characterization of a 50-kDa cysteine proteinase (gingipain) from Porphyromonas gingivalis . J Biol Chem 267:18896–18901
    [Google Scholar]
  10. DeCarlo A. A, Paramaesvaran M, Yun P. W, Collyer C, Hunter N. 1999; Porphyrin-mediated binding to hemoglobin by the HA2 domain of cysteine proteinases (gingipains) and hemagglutinins from the periodontal pathogen Porphyromonas gingivalis . J Bacteriol 181:3784–3791
    [Google Scholar]
  11. Eggert F. M, Drewell L, Bigelow J. A, Speck J. E, Goldner M. 1991; The pH of gingival crevices and periodontal pockets in children, teenagers and adults. Arch Oral Biol 36:233–238 [CrossRef]
    [Google Scholar]
  12. Hendtlass A, Dashper S. G, Reynolds E. C. 2000; Identification of an antigenic protein Pga30 from Porphyromonas gingivalis W50. Oral Microbiol Immunol 15:383–387 [CrossRef]
    [Google Scholar]
  13. Holt S. C, Ebersole J, Felton J, Brunsvold M, Kornman K. S. 1988; Implantation of Bacteroides gingivalis in nonhuman primates initiates progression of periodontitis. Science 239:55–57 [CrossRef]
    [Google Scholar]
  14. Inada Y, Shibata K. 1962; The Soret band of monomeric hematin and its changes on polymerization. Biochem Biophys Res Commun 9:323–327 [CrossRef]
    [Google Scholar]
  15. Kamal J. K. A, Behere D. V. 2002; Spectroscopic studies on human serum albumin and methemalbumin: optical, steady-state, and picosecond time-resolved fluorescence studies, and kinetics of substrate oxidation by methemalbumin. J Biol Inorg Chem 7:273–283 [CrossRef]
    [Google Scholar]
  16. Kapetanaki S, Varotsis C. 2000; Ferryl-oxo heme intermediate in the antimalarial mode of action of artemesinin. FEBS Lett 474:238–241 [CrossRef]
    [Google Scholar]
  17. Karunakaran T, Madden T, Kuramitsu H. 1997; Isolation and characterization of a hemin-regulated gene, hemR , from Porphyromonas gingivalis . J Bacteriol 179:1898–1908
    [Google Scholar]
  18. Machtei E. E, Dunford R, Hausmann E, Grossi S. G, Powell J, Cummins D, Zambon J. J, Genco R. J. 1997; Longitudinal study of prognostic factors in established periodontitis patients. J Clin Periodontol 24:102–109 [CrossRef]
    [Google Scholar]
  19. McDermid A. S, McKee A. S, Marsh P. D. 1988; Effect of environmental pH on enzyme activity and growth of Bacteroides gingivalis W50. Infect Immun 56:1096–1100
    [Google Scholar]
  20. Miller J. R, Taies J. A, Silver J. 1987; Mössbauer and spectroscopic studies on substituted tetraphenylporphyrinato iron(III) complexes in aqueous solutions and formation of the μ-oxo-bridged species. Inorg Chim Acta 138:205–214 [CrossRef]
    [Google Scholar]
  21. Nakayama K, Ratnayake D. B, Tsukub T, Kadowaki T, Yamamoto K, Fujimura S. 1998; Haemoglobin receptor is intragenically encoded by the cysteine proteinase-encoding genes and the haemagglutinin-encoding gene of Porphyromonas gingivalis . Mol Microbiol 27:51–61 [CrossRef]
    [Google Scholar]
  22. Olczak T, Dixon D. W, Genco C. A. 2001; Binding specificity of the Porphyromonas gingivalis heme and hemoglobin receptor HmuR, gingipain K, and gingipain R1 for heme, porphyrins, and metalloporphyrins. J Bacteriol 183:5599–5608 [CrossRef]
    [Google Scholar]
  23. Paramaesvaran M, Nguyen K. A, Caldon E. 8 other authors 2003; Porphyrin-mediated cell surface heme capture from hemoglobin by Porphyromonas gingivalis . J Bacteriol 185:2528–2537 [CrossRef]
    [Google Scholar]
  24. Pavloff N, Pemberton P. A, Potempa J, Chen W. C, Pike R. N, Prochazka V, Kiefer M. C, Travis J, Barr P. J. 1997; Molecular cloning and characterization of Porphyromonas gingivalis lysine-specific gingipain. A new member of an emerging family of pathogenic bacterial cysteine proteinases. J Biol Chem 272:1595–1600 [CrossRef]
    [Google Scholar]
  25. Pike R, McGraw W, Potempa J, Travis J. 1994; Lysine- and arginine-specific proteinases from Porphyromonas gingivalis . Isolation, characterization, and evidence for the existence of complexes with hemagglutinins. J Biol Chem 269:406–411
    [Google Scholar]
  26. Potempa J, Pavloff N, Travis J. 1995; Porphyromonas gingivalis : a proteinase/gene accounting audit. Trends Microbiol 3:430–434 [CrossRef]
    [Google Scholar]
  27. Potempa J, Mikolajczyk-Pawlinska J, Brassell D, Nelson D, Thogersen I. B, Enghild J. J, Travis J. 1998; Comparative properties of two cysteine proteinases (gingipain Rs), the products of two related but individual genes of Porphyromonas gingivalis . J Biol Chem 273:21648–21657 [CrossRef]
    [Google Scholar]
  28. Potempa J, Pike R, Travis J. 1997; Titration and mapping of the active site of cysteine proteinases from Porphyromonas gingivalis (gingipains) using peptidyl chloromethanes. Biol Chem 378:223–230
    [Google Scholar]
  29. Potempa J, Banbula A, Travis J. 2000; Role of bacterial proteinases in matrix destruction and modulation of host responses. Periodontology 2000; 24:153–192 [CrossRef]
    [Google Scholar]
  30. Rizza V, Sinclair P. R, White D. C, Cuorant P. R. 1968; Electron transport system of the protoheme-requiring anaerobe Bacteroides melaninogenicus . J Bacteriol 96:665–671
    [Google Scholar]
  31. Shi Y, Ratnayake D. B, Okamoto K, Abe N, Yamamoto K, Nakayama K. 1999; Genetic analyses of proteolysis, hemoglobin binding, and hemagglutination of Porphyromonas gingivalis . Construction of mutants with a combination of rgpA ,rgpB , kgp , and hagA . J Biol Chem 274:17955–17960 [CrossRef]
    [Google Scholar]
  32. Silver J, Lukas B. 1983; Mössbauer studies on protoporphyrin IX iron(III) solutions. Inorg Chim Acta 80:107–113 [CrossRef]
    [Google Scholar]
  33. Simpson W, Olczak T, Genco C. A. 2000; Characterization and expression of HmuR, a TonB-dependent hemoglobin receptor of Porphyromonas gingivalis . J Bacteriol 182:5737–5748 [CrossRef]
    [Google Scholar]
  34. Simpson W, Olczak T, Genco C. A. 2004; Lysine-specific gingipain K and heme/hemoglobin receptor HmuR are involved in heme utilization in Porphyromonas gingivalis . Acta Biochim Pol 51:253–262
    [Google Scholar]
  35. Slakeski N, Dashper S. G, Cook P, Poon C, Moore C, Reynolds E. C. 2000; A Porphyromonas gingivalis genetic locus encoding a heme transport system. Oral Microbiol Immunol 15:388–392 [CrossRef]
    [Google Scholar]
  36. Smalley J. W, Birss A. J, McKee A. S, Marsh P. D. 1993; Haem-binding proteins of Porphyromonas gingivalis W50 grown in a chemostat under haemin-limitation. J Gen Microbiol 139:2145–2150 [CrossRef]
    [Google Scholar]
  37. Smalley J. W, Silver J, Marsh P. J, Birss A. J. 1998; The periodontopathogen Porphyromonas gingivalis binds iron protoporphyrin IX in the μ-oxo dimeric form: an oxidative buffer and possible pathogenic mechanism. Biochem J 331:681–685
    [Google Scholar]
  38. Smalley J. W, Birss A. J, Silver J. 2000; The periodontal pathogen Porphyromonas gingivalis harnesses the chemistry of the μ-oxo bishaem of iron protoporphyrin IX to protect against hydrogen peroxide. FEMS Microbiol Lett 183:159–164
    [Google Scholar]
  39. Smalley J. W, Birss A. J, Withnall R, Silver J. 2002; Interactions of Porphyromonas gingivalis with oxyhaemoglobin and deoxyhaemoglobin. Biochem J 362:239–245 [CrossRef]
    [Google Scholar]
  40. Smalley J. W, Charalabous P, Hart C. A, Silver J. 2003; Transmissible Burkholderia cepacia genomovar IIIa strains bind and convert monomeric iron(III) protoporphyrin IX into the μ-oxo oligomeric form. Microbiology 149:843–853 [CrossRef]
    [Google Scholar]
  41. Smalley J. W, Thomas M. F, Birss A. J, Withnall R, Silver J. 2004; A combination of both arginine- and lysine-specific gingipain activity of Porphyromonas gingivalis is necessary for the generation of the μ-oxo bishaem-containing pigment from haemoglobin. Biochem J 379:833–840 [CrossRef]
    [Google Scholar]
  42. Sroka A, Sztukowska M, Potempa J, Travis J, Genco C. A. 2001; Degradation of host heme proteins by lysine- and arginine-specific cysteine proteinases (gingipains) of Porphyromonas gingivalis . J Bacteriol 83:5609–5616
    [Google Scholar]
  43. Sztukowska M, Sroka A, Bugno M, Banbula A, Takahashi Y, Pike R. N, Genco C. A, Travis J, Potempa J. 2004; The C-terminal domains of the gingipain K polyprotein are necessary for assembly of the active enzyme and expression of associated activities. Mol Microbiol 54:1393–1408 [CrossRef]
    [Google Scholar]
  44. Wood B. R, Langford S. J, Cooke B. M, Lim J, Glenister F. K, Duriska M, Unthank J. K, McNaughton D. 2004; Resonance Raman spectroscopy reveals new insight into the electronic structure of β -hematin and malaria pigment. J Am Chem Soc 126:9233–9239 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28835-0
Loading
/content/journal/micro/10.1099/mic.0.28835-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error