1887

Abstract

Recently, the authors identified serovar Typhimurium ( Typhimurium) definitive type (DT)104-specific sequences of mainly prophage origin by genomic subtractive hybridization. In the present study, the distribution of the prophages identified, ST104 and ST64B, and the novel prophage remnant designated prophage ST104B, was tested among 23 non-DT104 Typhimurium isolates of different phage types and 19 isolates of the DT104 subtypes DT104A, DT104B low and DT104L, and the DT104-related type U302. The four Typhimurium prophages Gifsy-1, Gifsy-2, Fels-1 and Fels-2 were also included. Analysis of prophage distribution in different Typhimurium isolates may supply additional information to enable development of a molecular method as an alternative to phage typing. Furthermore, the presence of the common DT104 antibiotic resistance genes for the penta-resistance type ACSSuT, , , , and (), was also studied because of the authors' focus on this emerging type. Based on differences in prophage presence within their genome, it was possible to divide Typhimurium isolates into 12 groups. Although no clear relationship was found between different phage type and prophage presence, discrimination could be made between the different DT104 subtypes based on diversity in the presence of prophages ST104, ST104B and ST64B. The novel prophage remnant ST104B, which harbours a homologue of the O157 : H7 HldD LPS assembly-related protein, was identified only in the 14 DT104L isolates and in the DT104-related U302 isolate. In conclusion, the presence of the genes for penta-resistance type ACSSuT, the HldD homologue containing ST104 prophage remnant and phage type DT104L are most likely common features of the emerging subtype of Typhimurium DT104.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28850-0
2006-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/7/2137.html?itemId=/content/journal/micro/10.1099/mic.0.28850-0&mimeType=html&fmt=ahah

References

  1. Anderson E. S, Ward L. R, Saxe M. J, de Sa J. D. 1977; Bacteriophage-typing designations of Salmonela typhimurium . J Hyg 78:297–300 [CrossRef]
    [Google Scholar]
  2. Bakshi C. S, Singh V. P, Wood M. W, Jones P. W, Wallis T. S, Galyov E. E. 2000; Identification of SopE2, a Salmonella secreted protein which is highly homologous to SopE and involved in bacterial invasion of epithelial cells. J Bacteriol 182:2341–2344 [CrossRef]
    [Google Scholar]
  3. Baumler A. J, Kusters J. G, Stojiljkovic I, Heffron F. 1994; Salmonella typhimurium loci involved in survival within macrophages. Infect Immun 62:1623–1630
    [Google Scholar]
  4. Bossi L, Fuentes J. A, Mora G, Figueroa-Bossi N. 2003; Prophage contribution to bacterial population dynamics. J Bacteriol 185:6467–6471 [CrossRef]
    [Google Scholar]
  5. Boyd D, Peters G. A, Cloeckaert A, Boumedine K. S, Chaslus-Dancla E, Imberechts H, Mulvey M. R. 2001; Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J Bacteriol 183:5725–5732 [CrossRef]
    [Google Scholar]
  6. Briggs C. E, Fratamico P. M. 1999; Molecular characterization of an antibiotic resistance gene cluster of Salmonella typhimurium DT104. Antimicrob Agents Chemother 43:846–849 [CrossRef]
    [Google Scholar]
  7. Brussow H, Canchaya C, Hardt W. D. 2004; Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602 [CrossRef]
    [Google Scholar]
  8. Campbell A. 2003; Prophage insertion sites. Res Microbiol 154:277–282 [CrossRef]
    [Google Scholar]
  9. Casjens S. R. 2005; Comparative genomics and evolution of the tailed-bacteriophages. Curr Opin Microbiol 8:451–458 [CrossRef]
    [Google Scholar]
  10. Casjens S. R, Gilcrease E. B, Winn-Stapley D. A. 7 other authors 2005; The generalized transducing Salmonella bacteriophage ES18: complete genome sequence and DNA packaging strategy. J Bacteriol 187:1091–1104 [CrossRef]
    [Google Scholar]
  11. Cheetham B. F, Katz M. E. 1995; A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol Microbiol 18:201–208 [CrossRef]
    [Google Scholar]
  12. Figueroa-Bossi N, Bossi L. 1999; Inducible prophages contribute to Salmonella virulence in mice. Mol Microbiol 33:167–176 [CrossRef]
    [Google Scholar]
  13. Figueroa-Bossi N, Bossi L. 2004; Resuscitation of a defective prophage in Salmonella cocultures. J Bacteriol 186:4038–4041 [CrossRef]
    [Google Scholar]
  14. Figueroa-Bossi N, Uzzau S, Maloriol D, Bossi L. 2001; Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella . Mol Microbiol 39:260–271 [CrossRef]
    [Google Scholar]
  15. Glynn M. K, Bopp C, Dewitt W, Dabney P, Mokhtar M, Angulo F. J. 1998; Emergence of multidrug-resistant Salmonella enterica serotype typhimurium DT104 infections in the United States. N Engl J Med 338:1333–1338 [CrossRef]
    [Google Scholar]
  16. Groisman E. A, Ochman H. 1997; How Salmonella became a pathogen. Trends Microbiol 5:343–349 [CrossRef]
    [Google Scholar]
  17. Hermans A. P, Abee T, Zwietering M. H, Aarts H. J. 2005; Identification of novel Salmonella enterica serovar Typhimurium DT104-specific prophage and nonprophage chromosomal sequences among serovar Typhimurium isolates by genomic subtractive hybridization. Appl Environ Microbiol 71:4979–4985 [CrossRef]
    [Google Scholar]
  18. Ho T. D, Figueroa-Bossi N, Wang M, Uzzau S, Bossi L, Slauch J. M. 2002; Identification of GtgE, a novel virulence factor encoded on the Gifsy-2 bacteriophage of Salmonella enterica serovar Typhimurium. J Bacteriol 184:5234–5239 [CrossRef]
    [Google Scholar]
  19. Hou Y. M. 1999; Transfer RNAs and pathogenicity islands. Trends Biochem Sci 24:295–298 [CrossRef]
    [Google Scholar]
  20. Hu H, Lan R, Reeves P. R. 2002; Fluorescent amplified fragment length polymorphism analysis of Salmonella enterica serovar typhimurium reveals phage-type-specific markers and potential for microarray typing. J Clin Microbiol 40:3406–3415 [CrossRef]
    [Google Scholar]
  21. Humphrey T. 2001; Salmonella Typhimurium definitive type 104. A multi-resistant Salmonella. Int J Food Microbiol 67:173–186 [CrossRef]
    [Google Scholar]
  22. Lawson A. J, Chart H, Dassama M. U, Threlfall E. J. 2002; Heterogeneity in expression of lipopolysaccharide by strains of Salmonella enterica serotype Typhimurium definitive phage type 104 and related phage types. Lett Appl Microbiol 34:428–432 [CrossRef]
    [Google Scholar]
  23. Malorny B, Schroeter A, Bunge C, Helmuth R. 2002; Prevalence of Escherichia coli O157 : H7 prophage-like sequences among German Salmonella enterica serotype Typhimurium phage types and their use in detection of phage type DT104 by the polymerase chain reaction. Vet Microbiol 87:253–265 [CrossRef]
    [Google Scholar]
  24. McClelland M, Sanderson K. E, Spieth J. 23 other authors 2001; Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856 [CrossRef]
    [Google Scholar]
  25. Miao E. A, Scherer C. A, Tsolis R. M, Kingsley R. A, Adams L. G, Baumler A. J, Miller S. I. 1999; Salmonella typhimurium leucine-rich repeat proteins are targeted to the SPI1 and SPI2 type III secretion systems. Mol Microbiol 34:850–864 [CrossRef]
    [Google Scholar]
  26. Mirold S, Rabsch W, Rohde M, Stender S, Tschape H, Russmann H, Igwe E, Hardt W. D. 1999; Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. Proc Natl Acad Sci U S A 96:9845–9850 [CrossRef]
    [Google Scholar]
  27. Mmolawa P. T, Willmore R, Thomas C. J, Heuzenroeder M. W. 2002; Temperate phages in Salmonella enterica serovar Typhimurium: implications for epidemiology. Int J Med Microbiol 291:633–644 [CrossRef]
    [Google Scholar]
  28. Mmolawa P. T, Schmieger H, Heuzenroeder M. W. 2003a; Bacteriophage ST64B, a genetic mosaic of genes from diverse sources isolated from Salmonella enterica serovar typhimurium DT 64. J Bacteriol 185:6481–6485 [CrossRef]
    [Google Scholar]
  29. Mmolawa P. T, Schmieger H, Tucker C. P, Heuzenroeder M. W. 2003b; Genomic structure of the Salmonella enterica serovar Typhimurium DT 64 bacteriophage ST64T: evidence for modular genetic architecture. J Bacteriol 185:3473–3475 [CrossRef]
    [Google Scholar]
  30. Ochman H, Lawrence J. G, Groisman E. A. 2000; Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304 [CrossRef]
    [Google Scholar]
  31. Pedulla M. L, Ford M. E, Houtz J. M. & 17 other authors; 2003; Origins of highly mosaic mycobacteriophage genomes. Cell 113:171–182 [CrossRef]
    [Google Scholar]
  32. Pelludat C, Prager R, Tschape H, Rabsch W, Schuchhardt J, Hardt W. D. 2005; Pilot study to evaluate microarray hybridization as a tool for Salmonella enterica serovar Typhimurium strain differentiation. J Clin Microbiol 43:4092–4106 [CrossRef]
    [Google Scholar]
  33. Porwollik S, Boyd E. F, Choy C, Cheng P, Florea L, Proctor E, McClelland M. 2004; Characterization of Salmonella enterica subspecies I genovars by use of microarrays. J Bacteriol 186:5883–5898 [CrossRef]
    [Google Scholar]
  34. Rabsch W, Mirold S, Hardt W. D, Tschape H. 2002; The dual role of wild phages for horizontal gene transfer among Salmonella strains. Berl Munch Tierarztl Wochenschr 115:355–359
    [Google Scholar]
  35. Reen F. J, Boyd E. F, Porwollik S, Murphy B. P, Gilroy D, Fanning S, McClelland M. 2005; Genomic comparisons of Salmonella enterica serovar Dublin, Agona, and Typhimurium strains recently isolated from milk filters and bovine samples from Ireland, using a Salmonella microarray. Appl Environ Microbiol 71:1616–1625 [CrossRef]
    [Google Scholar]
  36. Reiter W. D, Palm P, Yeats S. 1989; Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res 17:1907–1914 [CrossRef]
    [Google Scholar]
  37. Ross I. L, Heuzenroeder M. W. 2005; Discrimination within phenotypically closely related definitive types of Salmonella enterica serovar typhimurium by the multiple amplification of phage locus typing technique. J Clin Microbiol 43:1604–1611 [CrossRef]
    [Google Scholar]
  38. Schmieger H. 1999; Molecular survey of the Salmonella phage typing system of Anderson. J Bacteriol 181:1630–1635
    [Google Scholar]
  39. Stanley T. L, Ellermeier C. D, Slauch J. M. 2000; Tissue-specific gene expression identifies a gene in the lysogenic phage Gifsy-1 that affects Salmonella enterica serovar typhimurium survival in Peyer's patches. J Bacteriol 182:4406–4413 [CrossRef]
    [Google Scholar]
  40. Tanaka K, Nishimori K, Makino S. 8 other authors 2004; Molecular characterization of a prophage of Salmonella enterica serotype Typhimurium DT104. J Clin Microbiol 42:1807–1812 [CrossRef]
    [Google Scholar]
  41. Threlfall E. J. 2000; Epidemic Salmonella typhimurium DT 104--a truly international multiresistant clone. J Antimicrob Chemother 46:7–10 [CrossRef]
    [Google Scholar]
  42. Threlfall E. J, Frost J. A, Ward L. R, Rowe B. 1994; Epidemic in cattle and humans of Salmonella typhimurium DT 104 with chromosomally integrated multiple drug resistance. Vet Rec 134:577 [CrossRef]
    [Google Scholar]
  43. Tucker C. P, Heuzenroeder M. W. 2004; ST64B is a defective bacteriophage in Salmonella enterica serovar Typhimurium DT64 that encodes a functional immunity region capable of mediating phage-type conversion. Int J Med Microbiol 294:59–63 [CrossRef]
    [Google Scholar]
  44. van Hoek A. H, Scholtens I. M, Cloeckaert A, Aarts H. J. 2005; Detection of antibiotic resistance genes in different Salmonella serovars by oligonucleotide microarray analysis. J Microbiol Methods 62:13–23 [CrossRef]
    [Google Scholar]
  45. Weinbauer M. G. 2004; Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181 [CrossRef]
    [Google Scholar]
  46. Yamamoto N. 1969; Genetic evolution of bacteriophage. I. Hybrids between unrelated bacteriophages P22 and Fels 2. Proc Natl Acad Sci U S A 62:63–69 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28850-0
Loading
/content/journal/micro/10.1099/mic.0.28850-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error