1887

Abstract

The glycosphingolipids (GSLs) gangliotriaosylceramide (Gg) and gangliotetraosylceramide (Gg) have been implicated as receptors for type IV pili (T4P)-mediated epithelial cell attachment. Since T4P are divided into five groups, the authors determined whether GSLs in general, and Gg and Gg in particular, are specifically bound and required for host epithelial cell attachment of clinical and laboratory strains within these groups. An enterohaemorrhagic strain, CL56, known to bind to both Gg and Gg, provided a positive control. TLC overlay showed no binding of more than 12 strains to either Gg or Gg (or other GSLs), while CL56 Gg/Gg binding was readily detectable. GSL ELISA similarly demonstrated no significant binding to Gg or Gg, compared with CL56. Using a selective chemical inhibitor, epithelial cell GSL synthesis was abrogated, and Gg and Gg expression deleted, but attachment was not impaired. Target cell attachment was mediated by T4P, since non-piliated, but flagellated, mutants were unable to bind to the target cells. CFTR (cystic fibrosis transmembrane conductance regulator) has also been implicated as a receptor; however, in this work, overexpression of CFTR had no effect on binding. It is concluded that neither Gg nor Gg are specifically recognized by , and that endogenous GSLs do not have a role in the attachment of live intact to cultured lung epithelial cells. In contrast to whole piliated , T4P sheared from such bacteria showed significant Gg and Gg binding, which may explain the results of other studies.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28863-0
2006-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/9/2789.html?itemId=/content/journal/micro/10.1099/mic.0.28863-0&mimeType=html&fmt=ahah

References

  1. Aspinall G. O, McDonald A. G, Pang H, Kurjanczyk L. A, Penner J. L. 1994; Lipopolysaccharides of Campylobacter jejuni serotype O : 19: structures of core oligosaccharide regions from the serostrain and two bacterial isolates from patients with the Guillain-Barre syndrome. Biochemistry 33:241–249 [CrossRef]
    [Google Scholar]
  2. Baker N, Hansson G. C, Leffler H, Riise G, Svanborg-Edën C. 1990; Glycosphingolipid receptors for Pseudomonas aeruginosa . Infect Immun 58:2361–2366
    [Google Scholar]
  3. Barnett-Foster D. E, Philpott D, Abul-Milh M, Huesca M, Sherman P. M, Lingwood C. A. 1999; Phosphatidylethanolamine recognition mediates enteropathogenic and enterohemorrhagic E. coli host cell attachment. Microb Pathog 27:289–301 [CrossRef]
    [Google Scholar]
  4. Bryan R, Kube D, Perez A, Davis P, Prince A. 1998; Overproduction of the CFTR R domain leads to increased levels of asialoGM1 and increased Pseudomonas aeruginosa binding by epithelial cells. Am J Respir Cell Mol Biol 19:269–277 [CrossRef]
    [Google Scholar]
  5. Burrows L. L. 2005; Weapons of mass retraction. Mol Microbiol 57:878–888 [CrossRef]
    [Google Scholar]
  6. Campbell A. P, Wong W. Y, Schweizer F, Cachia P. J, Irvin R. T, Hindsgaul O, Hodges R. S, Sykes B. D, Houston M. Jr 1997; Interaction of the receptor binding domains of Pseudomonas aeruginosa pili strains PAK, PAO, KB7 and P1 to a cross-reactive antibody and receptor analog: implications for synthetic vaccine design. J Mol Biol 267:382–402 [CrossRef]
    [Google Scholar]
  7. Chen L. D, Hazlett L. D. 2000; Perlecan in the basement membrane of corneal epithelium serves as a site for P. aeruginosa binding. Curr Eye Res 20:260–267 [CrossRef]
    [Google Scholar]
  8. Chiang P, Burrows L. L. 2003; Biofilm formation by hyperpiliated mutants of Pseudomonas aeruginosa . J Bacteriol 185:2374–2378 [CrossRef]
    [Google Scholar]
  9. Comolli J. C, Hauser A. R, Waite L, Whitchurch C. B, Mattick J. S, Engel J. N. 1999a; Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia. Infect Immun 67:3625–3630
    [Google Scholar]
  10. Comolli J. C, Waite L. L, Mostov K. E, Engel J. N. 1999b; Pili binding to asialo-GM1 on epithelial cells can mediate cytotoxicity or bacterial internalization by Pseudomonas aeruginosa . Infect Immun 67:3207–3214
    [Google Scholar]
  11. Davies J. C. 2002; Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence. Paediatr Respir Rev 3:128–134 [CrossRef]
    [Google Scholar]
  12. Davies J, Dewar A, Bush A, Pitt T, Gruenert D, Geddes D. M, Alton E. W. 1999; Reduction in the adherence of Pseudomonas aeruginosa to native cystic fibrosis epithelium with anti-asialoGM1 antibody and neuraminidase inhibition. Eur Respir J 13:565–570 [CrossRef]
    [Google Scholar]
  13. Deal C, Krivan H. C. 1990; Lacto- and ganglio-series glycolipids are adhesion receptors for Neisseria gonorrhoeae . J Biol Chem 265:12774–12777
    [Google Scholar]
  14. De Bentzmann S, Roger P, Dupuit F, Bajolet-Laudinat O, Fuchey C, Plotkowski M. C, Puchelle E. 1996; Asialo GM1 is a receptor for Pseudomonas aeruginosa adherence to regenerating respiratory epithelial cells. Infect Immun 64:1582–1588
    [Google Scholar]
  15. de Bentzmann S, Roger P, Puchelle E. 1996; Pseudomonas aeruginosa adherence to remodelling respiratory epithelium. Eur Respir J 9:2145–2150 [CrossRef]
    [Google Scholar]
  16. Gibson R. L, Burns J. L, Ramsey B. W. 2003; Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168:918–951 [CrossRef]
    [Google Scholar]
  17. Gupta S. K, Berk R. S, Masinick S, Hazlett L. D. 1994; Pili and lipopolysaccharide of Pseudomonas aeruginosa bind to the glycolipid asialo GM1. Infect Immun 62:4572–4579
    [Google Scholar]
  18. Haardt M, Benharouga M, Lechardeur D, Kartner N, Lukacs G. L. 1999; C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation. J Biol Chem 274:21873–21877 [CrossRef]
    [Google Scholar]
  19. Hazlett L. D, Masinick S, Barrett R, Rosol K. 1993; Evidence for asialo GM1 as a corneal glycolipid receptor for Pseudomonas aeruginosa adhesion. Infect Immun 61:5164–5173
    [Google Scholar]
  20. Hobden J. A, Gupta S. K, Masinick S. A, Wu X, Kernacki K. A, Berk R. S, Hazlett L. D. 1996; Anti-receptor antibodies inhibit Pseudomonas aeruginosa binding to the cornea and prevent corneal perforation. Immunol Cell Biol 74:258–264 [CrossRef]
    [Google Scholar]
  21. Irvin R. T, Doig P, Lee K. K, Sastry P. A, Paranchych W, Todd T, Hodges R. S. 1989; Characterization of the Pseudomonas aeruginosa pilus adhesion: confirmation that the pilin structural protein subunit contains a human epithelial cell-binding domain. Infect Immun 57:3720–3726
    [Google Scholar]
  22. Jiang X, Hill W. G, Pilewski J. M, Weisz O. A. 1997; Glycosylation differences between a cystic fibrosis and rescued airway cell line are not CFTR dependent. Am J Physiol 273:L913–920
    [Google Scholar]
  23. Kirschnek S, Adams C, Gulbins E. 2005; Annexin II is a novel receptor for Pseudomonas aeruginosa . Biochem Biophys Res Commun 327:900–906 [CrossRef]
    [Google Scholar]
  24. Krivan H. C, Ginsburg V, Roberts D. D. 1988a; Pseudomonas aeruginosa and Pseudomonas cepacia isolated from cystic fibrosis patients bind specifically to gangliotetraosylceramide (asialo GM1) and gangliotriaosylceramide (asialo GM2). Arch Biochem Biophys 260:493–496 [CrossRef]
    [Google Scholar]
  25. Krivan H. C, Roberts D. D, Ginsburg V. 1988b; Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAc β 1-4 Gal found in some glycolipids. Proc Natl Acad Sci U S A 85:6157–6161 [CrossRef]
    [Google Scholar]
  26. Krivan H, Nilsson B, Lingwood C. A, Ryu H. 1991; Chlamydia trachomatis and Chlamydia pneumoniae bind specifically to phosphatidylethanolamine in HeLa cells and to GalNac β 1-4Gal β 1-4Glc sequences found in asialo-GM1 and asialo-GM2. Biochem Biophys Res Commun 175:1082–1089 [CrossRef]
    [Google Scholar]
  27. Kus J. V, Tullis E, Cvitkovitch D. G, Burrows L. L. 2004; Significant differences in type IV pilin allele distribution among Pseudomonas aeruginosa isolates from cystic fibrosis (CF) versus non-CF patients. Microbiology 150:1315–1326 [CrossRef]
    [Google Scholar]
  28. Lee K, Sheth H, Wong W, Serburne R, Paranchych W, Hodges R. C. L, Krivan H, Irvin R. 1994; The binding of Pseudomonas aeruginosa pili to glycosphingolipids is a tip associated event involving the C-terminal region of the structural pilin subunit. Mol Microbiol 11:705–713 [CrossRef]
    [Google Scholar]
  29. Lee K. K, Yu L, Macdonald D. L, Paranchych W, Hodges R. S, Irvin R. T. 1996; Anti-adhesin antibodies that recognize a receptor-binding motif (adhesintope) inhibit pilus/fimbrial-mediated adherence of Pseudomonas aeruginosa and Candida albicans to asialo-GM[sub]1[/sub] receptors and human buccal epithelial cell surface receptors. Can J Microbiol 42:479–486 [CrossRef]
    [Google Scholar]
  30. Lee L, Abe A, Shayman J. A. 1999; Improved inhibitors of glucosylceramide synthase. J Biol Chem 274:14662–14669 [CrossRef]
    [Google Scholar]
  31. Lingwood C. A. 1992; Bacterial cell adhesins/glycolipid receptors. Curr Opin Struct Biol 2:693–700 [CrossRef]
    [Google Scholar]
  32. Lingwood C. A. 2000; Glycolipids and bacterial pathogenesis. In Oligosaccharides in Chemistry and Biology : a Comprehensive Handbook pp  809–820 Edited by Ernst B., Sinay P., Hart G. Wenheim: Wiley-VCH;
    [Google Scholar]
  33. McNamara N, Khong A, McKemy D, Caterina M, Boyer J, Julius D, Basbaum C. 2001; ATP transduces signals from ASGM1, a glycolipid that functions as a bacterial receptor. Proc Natl Acad Sci U S A 98:9086–9091 [CrossRef]
    [Google Scholar]
  34. Pier G. B, Grout M, Zaidi T. S. 1997; Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proc Natl Acad Sci U S A 94:12088–12093 [CrossRef]
    [Google Scholar]
  35. Poschet J. F, Boucher J. C, Tatterson L, Skidmore J, Van Dyke R. W, Deretic V. 2001; Molecular basis for defective glycosylation and Pseudomonas pathogenesis in cystic fibrosis lung. Proc Natl Acad Sci U S A 98:13972–13977 [CrossRef]
    [Google Scholar]
  36. Ramphal R, Arora S. K. 2001; Recognition of mucin components by Pseudomonas aeruginosa . Glycoconj J 18:709–713 [CrossRef]
    [Google Scholar]
  37. Ramphal R, Carnoy C, Fievre S, Michalski J.-C, Houdret N, Lamblin G, Strecker G, Roussel P. 1991a; Pseudomonas aeruginosa recognizes carbohydrate chains containing type 1 (Gal β 1-3GlcNAc) or type 2 (Gal β 1-4GlcNAc) diaccharide units. Infect Immun 59:700–704
    [Google Scholar]
  38. Ramphal R, Koo L, Ishimoto K. S, Totten P. A, Lara J. C, Lory S. 1991b; Adhesion of Pseudomonas aeruginosa pilin-deficient mutants to mucin. Infect Immun 59:1307–1311
    [Google Scholar]
  39. Rosenberger C. M, Brumell J. H, Finlay B. B. 2000; Microbial pathogenesis: lipid rafts as pathogen portals. Curr Biol 10:R823–825 [CrossRef]
    [Google Scholar]
  40. Saiman L, Prince A. 1993; Pseudomonas aeruginosa pili bind to asialoGM1 which is increased on the surface of cystic fibrosis epithelial cells. J Clin Invest 92:1875–1880 [CrossRef]
    [Google Scholar]
  41. Schroeder T. H, Zaidi T, Pier G. B. 2001; Lack of adherence of clinical isolates of Pseudomonas aeruginosa to asialo-GM(1) on epithelial cells. Infect Immun 69:719–729 [CrossRef]
    [Google Scholar]
  42. Schweizer F, Jiao H, Hindsgaul O, Wong W. Y, Irvin R. T. 1998; Interaction between the pili of Pseudomonas aeruginosa PAK and its carbohydrate receptor β -d-galnac(1→4) β -d-Gal analogs. Can J Microbiol 44:307–311
    [Google Scholar]
  43. Sharma M, Pampinella F, Nemes C. 8 other authors 2004; Misfolding diverts CFTR from recycling to degradation: quality control at early endosomes. J Cell Biol 164:923–933 [CrossRef]
    [Google Scholar]
  44. Strömberg N, Deal C, Nyberg G, Normark S, So M, Karlsson K.-A. 1988; Identification of carbohydrate structures that are possible receptors for Neisseria gonorrhoeae . Proc Natl Acad Sci U S A 85:4902–4906 [CrossRef]
    [Google Scholar]
  45. Virella-Lowell I, Herlihy J. D, Liu B, Lopez C, Cruz P, Muller C, Baker H. V, Flotte T. R. 2004; Effects of CFTR, interleukin-10, and Pseudomonas aeruginosa on gene expression profiles in a CF bronchial epithelial cell Line. Mol Ther 10:562–573 [CrossRef]
    [Google Scholar]
  46. Wall D, Kaiser D. 1999; Type IV pili and cell motility. Mol Microbiol 32:1–10 [CrossRef]
    [Google Scholar]
  47. Woods D. E, Straus D. C, Berry V. K, Bass J. A, Johanson W. G. Jr 1980; Role of pili in adherence of Pseudomonas aeruginosa to mammalian buccal epithelial cells. Infect Immun 29:1146–1151
    [Google Scholar]
  48. Wu X, Gupta S. K, Hazlett L. D. 1995; Characterization of P. aeruginosa pili binding human corneal epithelial proteins. Curr Eye Res 14:969–977 [CrossRef]
    [Google Scholar]
  49. Wu X, Kurpakus M, Hazlett L. D. 1996; Some P. aeruginosa pilus-binding proteins of human corneal epithelium are cytokeratins. Curr Eye Res 15:782–791 [CrossRef]
    [Google Scholar]
  50. Yiu S. C. K, Lingwood C. A. 1992; Polyisobutylmethacrylate modifies glycolipid binding specificity of verotoxin 1 in thin layer chromatogram overlay procedures. Anal Biochem 202:188–192 [CrossRef]
    [Google Scholar]
  51. Yuki N, Handa S, Taki T, Kasama T, Takahashi M, Saito K, Miyataki T. 1992; Cross-reactive antigen between nervous tissue and a bacterium elicits Guillain-Barre syndrome: molecular mimicry between ganglioside GM1 and lipopolysaccahride from Penner's serotype 19 of Campylobacter jejuni . Biomed Res 13:451–453 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28863-0
Loading
/content/journal/micro/10.1099/mic.0.28863-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error