1887

Abstract

Extracellular electron transfer onto Fe(III) oxides in is considered to require proteins that must be exported to the outer surface of the cell. In order to investigate this, the putative gene for OxpG, the pseudopilin involved in a type II general secretion pathway of Gram-negative bacteria, was deleted. The mutant was unable to grow with insoluble Fe(III) oxide as the electron acceptor. Growth on soluble Fe(III) was not affected. An analysis of proteins that accumulated in the periplasm of the mutant, but not in the wild-type, led to the identification of a secreted protein, OmpB. OmpB is predicted to be a multicopper protein, with highest homology to the manganese oxidase, MofA, from . OmpB contains a potential Fe(III)-binding site and a fibronectin type III domain, suggesting a possible role for this protein in accessing Fe(III) oxides. OmpB was localized to the membrane fraction of and in the supernatant of growing cultures, consistent with the type II secretion system exporting OmpB. A mutant in which was deleted had the same phenotype as the mutant, suggesting that the failure to export OmpB was responsible for the inability of the -deficient mutant to reduce Fe(III) oxide. This is the first report that proposes a role for a multicopper oxidase-like protein in an anaerobic organism. These results further emphasize the importance of outer-membrane proteins in Fe(III) oxide reduction and suggest that outer-membrane proteins other than -type cytochromes are required for Fe(III) oxide reduction in species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28864-0
2006-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/8/2257.html?itemId=/content/journal/micro/10.1099/mic.0.28864-0&mimeType=html&fmt=ahah

References

  1. Anderson R. T, Lovley D. R. 2002; Microbial redox interactions with uranium: an environmental perspective. In Interactions of Microorganisms with Radionuclides pp  205–223 Edited by Keith-Roach M. J., Livens F. R. Amsterdam: Elsevier;
    [Google Scholar]
  2. Anderson R. T, Vrionis H. A, Ortiz-Bernad I. 10 other authors 2003; Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69:5884–5891 [CrossRef]
    [Google Scholar]
  3. Arrieta J. G, Sotolongo M, Menendez C, Alfonso D, Trujillo L. E, Soto M, Ramirez R, Hernandez L. 2004; A type II protein secretory pathway required for levansucrase secretion by Gluconacetobacter diazotrophicus . J Bacteriol 186:5031–5039 [CrossRef]
    [Google Scholar]
  4. Beliaev A. S, Saffarini D. A. 1998; Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J Bacteriol 180:6292–6297
    [Google Scholar]
  5. Brouwers G. J, Corstjens P. L, Cornelis P, Baysse C, de Vrind J. P, de Vrind-de Jong E. W. 1999; cumA , a gene encoding a multicopper oxidase, is involved in Mn[sup]2+[/sup] oxidation in Pseudomonas putida GB-1. Appl Environ Microbiol 65:1762–1768
    [Google Scholar]
  6. Brouwers G. J, Corstjens P. L, Verkamman A, de Vrind J. P, de Kuyper M, de Vrind-de Jong E. W. 2000a; Stimulation of Mn[sup]2+[/sup] oxidation in Leptothrix discophora SS-1 by Cu[sup]2+[/sup] and sequence analysis of the region flanking the gene encoding putative multicopper oxidase MofA. Geomicrobiol J 17:25–33 [CrossRef]
    [Google Scholar]
  7. Brouwers G. J, Vijgenboom E, Corstjens P. L. A, de Vrind M. J. P. M, de Vrind-de Jong E. W. 2000b; Bacterial Mn[sup]2+[/sup] oxidizing systems and multicopper oxidases: an overview of mechanisms and functions. Geomicrobiol J 17:1–24 [CrossRef]
    [Google Scholar]
  8. Caccavo F., Jr, Lonergan D. J, Lovley D. R, Davis M, Stolz J. F, McInerney M. J. 1994; Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759
    [Google Scholar]
  9. Childers S. E, Ciufo S, Lovley D. R. 2002; Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416:767–769 [CrossRef]
    [Google Scholar]
  10. Coppi M. V, Leang C, Sandler S. J, Lovley D. R. 2001; Development of a genetic system for Geobacter sulfurreducens . Appl Environ Microbiol 67:3180–3187 [CrossRef]
    [Google Scholar]
  11. Corstjens P. L. A. M, DeVrind J. P. M, Goosen T, DeVrind-deJong E. W. 1997; Identification and molecular analysis of the Leptothrix discophora SS-1 mofA gene, a gene putatively encoding a manganese-oxidizing protein with copper domains. Geomicrobiol J 14:91–108 [CrossRef]
    [Google Scholar]
  12. Dehio M, Knorre A, Lanz C, Dehio C. 1998; Construction of versatile high-level expression vectors for Bartonella henselae and the use of green fluorescent protein as a new expression marker. Gene 215:223–229 [CrossRef]
    [Google Scholar]
  13. d'Enfert C, Ryter A, Pugsley A. P. 1987; Cloning and expression in Escherichia coli of the Klebsiella pneumoniae genes for production, surface localization and secretion of the lipoprotein pullulanase. EMBO J 6:3531–3538
    [Google Scholar]
  14. De Vrind J, De Groot A, Brouwers G. J, Tommassen J, De Vrind-De Jong E. W. 2003; Identification of a novel Gsp-related pathway required for secretion of the manganese-oxidizing factor of Pseudomonas putida strain GB-1. Mol Microbiol 47:993–1006 [CrossRef]
    [Google Scholar]
  15. DiChristina T. J, Moore C. M, Haller C. A. 2002; Dissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires ferE , a homolog of the pulE (gspE) type II protein secretion gene. J Bacteriol 184:142–151 [CrossRef]
    [Google Scholar]
  16. Filloux A. 1999; Type II protein secretion: the main terminal branch of the general secretory pathway. In Transport of Molecules Across Microbial Membranes pp  80–109 Edited by Broome-Smith J. K., Baumberg S., Stirling C. J., Ward F. B. Cambridge: Cambridge University Press;
    [Google Scholar]
  17. Finneran K. T, Housewright M. E, Lovley D. R. 2002; Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments. Environ Microbiol 4:510–516 [CrossRef]
    [Google Scholar]
  18. Gharahdaghi F, Weinberg C. R, Meagher D. A, Imai B. S, Mische S. M. 1999; Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis 20:601–605 [CrossRef]
    [Google Scholar]
  19. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  20. Holmes D. E, Finneran K. T, O'Neil R. A, Lovley D. R. 2002; Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl Environ Microbiol 68:2300–2306 [CrossRef]
    [Google Scholar]
  21. Kataeva I. A, Seidel R. D., 3rd, Shah A, West L. T, Li X. L, Ljungdahl L. G. 2002; The fibronectin type 3-like repeat from the Clostridium thermocellum cellobiohydrolase CbhA promotes hydrolysis of cellulose by modifying its surface. Appl Environ Microbiol 68:4292–4300 [CrossRef]
    [Google Scholar]
  22. Kovach M. E, Elzer P. H, Hill D. S, Robertson G. T, Farris M. A, Roop R. M., 2nd, Peterson K. M. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176 [CrossRef]
    [Google Scholar]
  23. Leang C, Coppi M. V, Lovley D. R. 2003; OmcB, a c -type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens . J Bacteriol 185:2096–2103 [CrossRef]
    [Google Scholar]
  24. Lin Y, Xiong G. 2004; Molecular cloning and sequence analysis of the chitinase gene from Bacillus thuringiensis serovar alesti . Biotechnol Lett 26:635–639 [CrossRef]
    [Google Scholar]
  25. Lloyd J. R, Lovley D. R. 2001; Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253 [CrossRef]
    [Google Scholar]
  26. Lloyd J. R, Leang C, Hodges Myerson A. L, Coppi M. V, Ciufo S, Methe B, Sandler S. J, Lovley D. R. 2003; Biochemical and genetic characterization of PpcA, a periplasmic c -type cytochrome in Geobacter sulfurreducens . Biochem J 369:153–161 [CrossRef]
    [Google Scholar]
  27. Lovley D. R. 1991; Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287
    [Google Scholar]
  28. Lovley D. R. 2000; Fe(III) and Mn(IV) reduction. In Environmental Microbe-Metal Interactions pp  3–30 Edited by Lovley D. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. Lovley D. R, Phillips E. J. 1986; Organic matter mineralization with the reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689
    [Google Scholar]
  30. Lovley D. R, Phillips E. J. P. 1988; Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480
    [Google Scholar]
  31. Lovley D. R, Holmes D. E, Nevin K. P. 2004; Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286
    [Google Scholar]
  32. Marx C. J, Lidstrom M. E. 2001; Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiology 147:2065–2075
    [Google Scholar]
  33. Mehta T, Coppi M. V, Childers S. E, Lovley D. R. 2005; Outer membrane c -type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens . Appl Environ Microbiol 71:8634–8641 [CrossRef]
    [Google Scholar]
  34. Methe B. A, Nelson K. E, Eisen J. A. 8 other authors 2003; Genome of Geobacter sulfurreducens : metal reduction in subsurface environments. Science 302:1967–1969 [CrossRef]
    [Google Scholar]
  35. Murphy K. C, Campellone K. G, Poteete A. R. 2000; PCR-mediated gene replacement in Escherichia coli . Gene 246:321–330 [CrossRef]
    [Google Scholar]
  36. Myers C. R, Myers J. M. 2002; MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of Shewanella putrefaciens MR-1. Appl Environ Microbiol 68:5585–5594 [CrossRef]
    [Google Scholar]
  37. Nakai K, Horton P. 1999; PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–36 [CrossRef]
    [Google Scholar]
  38. Nevin K. P, Lovley D. R. 2000; Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens . Appl Environ Microbiol 66:2248–2251 [CrossRef]
    [Google Scholar]
  39. Nevin K. P, Lovley D. R. 2002; Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol J 19:141–159 [CrossRef]
    [Google Scholar]
  40. Nevin K. P, Finneran K. T, Lovley D. R. 2003; Microorganisms associated with uranium bioremediation in a high-salinity subsurface sediment. Appl Environ Microbiol 69:3672–3675 [CrossRef]
    [Google Scholar]
  41. North N. N, Dollhopf S. L, Petrie L, Istok J. D, Balkwill D. L, Kostka J. E. 2004; Change in bacterial community structure during in situ biostimulation of subsurface sediment cocontaminated with uranium and nitrate. Appl Environ Microbiol 70:4911–4920 [CrossRef]
    [Google Scholar]
  42. Nunn D. 1999; Bacterial type II protein export and pilus biogenesis: more than just homologies?. Trends Cell Biol 9:402–408 [CrossRef]
    [Google Scholar]
  43. Ortiz-Bernad I, Anderson R. T, Vrionis H. A, Lovley D. R. 2004; Resistance of solid-phase U(VI) to microbial reduction during in situ bioremediation of uranium-contaminated groundwater. Appl Environ Microbiol 70:7558–7560 [CrossRef]
    [Google Scholar]
  44. Pugsley A. P. 1993a; The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 57:50–108
    [Google Scholar]
  45. Pugsley A. P. 1993b; Processing and methylation of PuIG, a pilin-like component of the general secretory pathway of Klebsiella oxytoca . Mol Microbiol 9:295–308 [CrossRef]
    [Google Scholar]
  46. Reguera G, McCarthy K. D, Mehta T, Nicoll J. S, Touminen M. T, Lovley D. R. 2005; Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101 [CrossRef]
    [Google Scholar]
  47. Richardson D. J. 2000; Bacterial respiration: a flexible process for a changing environment. Microbiology 146:551–571
    [Google Scholar]
  48. Röling W. F, van Breukelen B. M, Braster M, Lin B, van Verseveld H. W. 2001; Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl Environ Microbiol 67:4619–4629 [CrossRef]
    [Google Scholar]
  49. Rooney-Varga J. N, Anderson R. T, Fraga J. L, Ringelberg D, Lovley D. R. 1999; Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl Environ Microbiol 65:3056–3063
    [Google Scholar]
  50. Sambrook J, Fritsch J. E, Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  51. Sandkvist M. 2001a; Biology of type II secretion. Mol Microbiol 40:271–283 [CrossRef]
    [Google Scholar]
  52. Sandkvist M. 2001b; Type II secretion and pathogenesis. Infect Immun 69:3523–3535 [CrossRef]
    [Google Scholar]
  53. Sandler S. J, Clark A. J. 1994; RecOR suppression of recF mutant phenotypes in Escherichia coli K-12. J Bacteriol 176:3661–3672
    [Google Scholar]
  54. Severance S, Chakraborty S, Kosman D. J. 2004; The Ftr1p iron permease in the yeast plasma membrane: orientation, topology and structure-function relationships. Biochem J 380:487–496 [CrossRef]
    [Google Scholar]
  55. Snoeyenbos-West O. L, Nevin K. P, Anderson R. T, Lovley D. R. 2000; Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments. Microb Ecol 39:153–167 [CrossRef]
    [Google Scholar]
  56. Stein L. Y, La Duc M. T, Grundl T. J, Nealson K. H. 2001; Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments. Environ Microbiol 3:10–18 [CrossRef]
    [Google Scholar]
  57. Tor J. M, Lovley D. R, Kashefi K, Holmes D. E. 2004; Potential importance of dissimilatory Fe(III)-reducing microorganisms in hot sedimentary environments. In The Subseafloor Biosphere at Mid-Ocean Ridges vol. 144 pp  199–211 Edited by Wilcock W. S. D., Delong E. F., Kelley D. S., Baross J. A., Cary S. C. Washington, DC: American Geophysical Union;
    [Google Scholar]
  58. Vargas M, Kashefi K, Blunt-Harris E. L, Lovley D. R. 1998; Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–67 [CrossRef]
    [Google Scholar]
  59. Vignon G, Kohler R, Larquet E, Giroux S, Prevost M. C, Roux P, Pugsley A. P. 2003; Type IV-like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides. J Bacteriol 185:3416–3428 [CrossRef]
    [Google Scholar]
  60. Walker J. C. G. 1987; Was the Archaean biosphere upside down?. Nature 329:710–712 [CrossRef]
    [Google Scholar]
  61. Watanabe T, Ito Y, Yamada T, Hashimoto M, Sekine S, Tanaka H. 1994; The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J Bacteriol 176:4465–4472
    [Google Scholar]
  62. Woodcock D. M, Crowther P. J, Doherty J, Jefferson S, DeCruz E, Noyer-Wiedner M, Smith S. S, Michael M. Z, Graham M. W. 1989; Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 17:3469–3478 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28864-0
Loading
/content/journal/micro/10.1099/mic.0.28864-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error