1887

Abstract

Secondary and tertiary amino groups were introduced into polymer chains grafted onto a polyethylene flat-sheet membrane to evaluate the effects of surface properties on the adhesion and viability of a strain of the Gram-negative bacterium and a strain of the Gram-positive bacterium . The characterization of the surfaces containing amino groups, i.e. ethylamino (EA) and diethylamino (DEA) groups, revealed that the membrane potentials are proportional to amino-group densities and contact angle hysteresis. A high bacterial adhesion rate constant was observed at high membrane potential, which indicates that membrane potential could be used as an indicator for estimating bacterial adhesion to the EA and DEA sheets, especially in . The bacterial adhesion rate constant of markedly increased at a membrane potential higher than −7.8 mV, whereas that of increased at a membrane potential higher than −8.3 mV, at which the dominant effect on bacterial adhesion is expected to change. The viability experiments revealed that approximately 80 % of cells adhering to the sheets with high membrane potential were inactivated after a contact time of 8 h, whereas 60 % of cells were inactivated. Furthermore, viability significantly decreased at a membrane potential higher than −8 mV, whereas viability decreased as membrane potential increased, which reflects differences in cell wall structure between and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28881-0
2006-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/12/3575.html?itemId=/content/journal/micro/10.1099/mic.0.28881-0&mimeType=html&fmt=ahah

References

  1. Bos R, Busscher H. J, van der Mei H. C. 1999; Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS Microbiol Rev 23:179–230
    [Google Scholar]
  2. Boulos L, Prevost M, Barbeau B, Coallier J, Desjardins R. 1999; LIVE/DEAD® Bac LightTM: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods 37:77–86 [CrossRef]
    [Google Scholar]
  3. Busscher H. J, van der Mei H. C. 1995; Use of flow chamber devices and image analysis methods to study microbial adhesion. In Adhesion of Microbial Pathogens Methods in Enzymology pp.  455–477 Edited by Doyle R. J., Ofek I. San Diego: Academic Press;
    [Google Scholar]
  4. Busscher H. J, Bos R, van der Mei H. C. 1995; Initial microbial adhesion is a determinant for the strength of biofilm adhesion. FEMS Microbiol Lett 128:229–234 [CrossRef]
    [Google Scholar]
  5. Fox P, Suidan M. T, Bandy J. T. 1990; A comparison of media types in acetate fed expanded-bed anaerobic reactors. Water Res 24:827–835 [CrossRef]
    [Google Scholar]
  6. Gottenbos B, Busscher H. J, Grijpma D. W, Feijnen J, van der Mei H. C. 1999; Initial adhesion and surface growth of Pseudomonas aeruginosa on negatively and positively charged poly(methacrylates). J Mater Sci Mater Med 10:853–855 [CrossRef]
    [Google Scholar]
  7. Gottenbos B, Busscher H. J, van der Mei H. C. 2000; Initial adhesion and surface growth of Staphylococcus epidermidis and Pseudomonas aeruginosa on biomedical polymers. J Biomed Mater Res 50:208–214 [CrossRef]
    [Google Scholar]
  8. Gottenbos B, Grijpma D. W, Feijnen J, Busscher H. J, van der Mei H. C. 2001; Antimicrobial effects of positively charged surface on adhering Gram-positive and Gram-negative bacteria. J Antimicrob Chemother 48:7–13 [CrossRef]
    [Google Scholar]
  9. Hallam N. B, West J. R, Forster C. F, Simms J. 2001; The potential for biofilm growth in water distribution systems. Water Res 35:4063–4071 [CrossRef]
    [Google Scholar]
  10. Harris L. G, Richards R. G. 2004; Staphylococcus aureus adhesion to different treated titanium surfaces. J Mater Sci Mater Med 15:311–314 [CrossRef]
    [Google Scholar]
  11. Hendricks S. K, Kwok C, Shen M. C, Horbett T. A, Ratner B. D, Bryers J. D. 2000; Plasma-deposited membranes for controlled release of antibiotic to prevent bacterial adhesion and biofilm formation. J Biomed Mater Res 50:160–170 [CrossRef]
    [Google Scholar]
  12. Hibiya K, Tsuneda S, Hirata A. 2000; Formation and characteristics of nitrifying biofilm on a membrane modified with positively-charged polymer chains. Colloids Surf B Biointerfaces 18:105–112 [CrossRef]
    [Google Scholar]
  13. Kawai T, Sugita K, Saito K, Sugo T. 2000; Extension and shrinkage of polymer brush grafted onto porous membrane induced by protein binding. Macromolecules 33:1306–1309 [CrossRef]
    [Google Scholar]
  14. Kawai T, Saito K, Lee W. 2003; Protein binding to polymer brush, based on ion-exchange, hydrophobic, and affinity interactions. J Chromatogr B 790:131–142 [CrossRef]
    [Google Scholar]
  15. Kjellerup B. V, Olesen B. H, Nielsen J. L, Frolund B, Odum S, Nielsen P. H. 2003; Monitoring and characterisation of bacteria in corroding district heating systems using fluorescence in situ hybridisation and microautoradiography. Water Sci Technol 47:117–122
    [Google Scholar]
  16. Koguma I, Sugita K, Saito K, Sugo T. 2000; Multilayer binding of proteins to polymer chains grafted onto porous hollow-fiber membranes containing different anion-exchange groups. Biotechnol Prog 16:456–461 [CrossRef]
    [Google Scholar]
  17. Kügler R, Bouloussa O, Rondelez F. 2005; Evidence of a charge-density threshold for optimum efficiency of biocidal cationic surfaces. Microbiology 151:1341–1348 [CrossRef]
    [Google Scholar]
  18. Lee W, Furusaki S, Saito K, Sugo T, Makuuchi K. 1996; Adsorption kinetics of microbial cells onto a novel brush-type polymeric material prepared by radiation-induced graft polymerization. Biotechnol Prog 12:178–183 [CrossRef]
    [Google Scholar]
  19. Lee W, Saito K, Furusaki S, Sugo T. 1997; Capture of microbial cells on brush-type polymeric materials bearing different functional groups. Biotechnol Bioeng 53:523–528 [CrossRef]
    [Google Scholar]
  20. Lee W, Saito K, Furusaki S, Sugo T. 1998; Tailoring a brush-type interface favorable for capturing microbial cells. J Colloid Interface Sci 200:66–73 [CrossRef]
    [Google Scholar]
  21. Lee S. B, Koepsel R. R, Morley S. W, Matyjaszewski K, Sun Y, Russell A. J. 2004; Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5:877–882 [CrossRef]
    [Google Scholar]
  22. Li B. K, Logan B. E. 2004; Bacterial adhesion to glass and metal-oxide surfaces. Colloids Surf B Biointerface 36:81–90 [CrossRef]
    [Google Scholar]
  23. Lin J, Qiu S. Y, Lewis K, Klibanov A. M. 2003; Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine. Biotechnol Bioeng 83:168–172 [CrossRef]
    [Google Scholar]
  24. Lin W, Yu T, McSwain B. S, He Y. L. S. 2004; Biological fixed film systems. Water Environ Res 76:1099–1154 [CrossRef]
    [Google Scholar]
  25. McDonnell G, Russell A. D. 1999; Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179
    [Google Scholar]
  26. Morgan T. D, Wilson M. 2001; The effects of surface roughness and type of denture acrylic on biofilm formation by Streptococcus oralis in a constant depth film fermentor. J Appl Microbiol 91:47–53 [CrossRef]
    [Google Scholar]
  27. Nicolella C, Heijnen J. J, van Loosdrecht M. C. M. 2000; Wastewater treatment with particulate biofilm reactors. J Biotechnol 80:1–33 [CrossRef]
    [Google Scholar]
  28. Park K. D, Kim Y. S, Han D. K, Kim Y. H, Lee E. H. B, Suh H, Choi K. S. 1998; Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials 19:851–859 [CrossRef]
    [Google Scholar]
  29. Pasmore M, Todd P, Smith S, Baker D, Silverstein J, Coons D, Bowman C. N. 2001; Effects of ultrafiltration membrane surface properties on Pseudomonas aeruginosa biofilm initiation for the purpose of reducing biofouling. J Membr Sci 194:15–32 [CrossRef]
    [Google Scholar]
  30. Petrozzi S, Kut O. M, Dunn I. J. 1993; Protection of biofilms against toxic shocks by the adsorption and desorption capacity of carriers in anaerobic fluidized bed reactors. Bioprocess Eng 9:47–59 [CrossRef]
    [Google Scholar]
  31. Roosjen A, Kaper H. J, Norde W, Busscher H. J, van der Mei H. C. 2003; Inhibition of adhesion of yeasts and bacteria by poly(ethylene oxide)-brushes on glass in a parallel plate flow chamber. Microbiology 149:3239–3246 [CrossRef]
    [Google Scholar]
  32. Roosjen A, Busscher H. J, Norde W, van der Mei H. C. 2004; Microbial adhesion to poly (ethylene oxide) brushes: influence of polymer chain length and temperature. Langmuir 20:10949–10955 [CrossRef]
    [Google Scholar]
  33. Salton M. R. J. 1968; Lytic agents, cell permeability and monolayer penetrability. J Gen Physiol 52:252–277
    [Google Scholar]
  34. Stoodley P, Warwood B. K. 2003; Use of flow cells and annular reactors to study biofilms. In Biofilms in Medicine, Industry and Environmental Biotechnology pp.  197–213 Edited by Lens P., Moran A. P., Mahony T., Stoodley P., O'Flaherty V. London: IWA Publishing;
    [Google Scholar]
  35. Terada A, Yamamoto T, Hibiya K, Tsuneda S, Hirata A. 2004; Enhancement of biofilm formation onto surface-modified hollow-fiber membranes and its application to a membrane-aerated biofilm reactor. Water Sci Technol 49:263–268
    [Google Scholar]
  36. Terada A, Yuasa S, Tsuneda S, Hirata A, Katakai M, Tamada M. 2005; Elucidation of dominant effect on initial bacterial adhesion onto polymer surfaces prepared by radiation-induced graft polymerization. Colloids Surf B Biointerfaces 43:99–107 [CrossRef]
    [Google Scholar]
  37. Tiller J. C, Liao C. J, Lewis K, Klibanov A. M. 2001; Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci 98:5981–5985 [CrossRef]
    [Google Scholar]
  38. Tsuneda S, Saito K, Furusaki S, Sugo T, Ishigaki I. 1992; Water/acetone permeability of porous hollow-fiber membrane containing diethylamino groups on the grafted polymer branches. J Membr Sci 71:1–12 [CrossRef]
    [Google Scholar]
  39. Tsuneda S, Park S, Hayashi H, Jung J, Hirata A. 2001; Enhancement of nitrifying biofilm formation using selected EPS produced by heterotrophic bacteria. Water Sci Technol 43:197–204
    [Google Scholar]
  40. Tsuru T, Nakao S, Kimura S. 1990; Effective charge-density and pore structure of charged ultrafiltration membranes. J Chem Eng Jpn 23:604–610 [CrossRef]
    [Google Scholar]
  41. Vaara M. 1992; Agents that increase the permeability of the outer membrane. Microbiol Rev 56:395–411
    [Google Scholar]
  42. van Loosdrecht M. C. M, Norder W, Lyklema J, Zehnder A. J. B. 1990; Hydrophobic and electrostatic parameters in bacterial adhesion. Aquat Sci 51:103–114
    [Google Scholar]
  43. Wang Y, Kim J. H, Choo K. H, Lee Y. S, Lee C. H. 2000; Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. J Membr Sci 169:269–276 [CrossRef]
    [Google Scholar]
  44. Webb K, Hlady V, Tresco P. A. 1998; Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J Biomed Mater Res 41:422–430 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28881-0
Loading
/content/journal/micro/10.1099/mic.0.28881-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error