1887

Abstract

Copper amine oxidases (CAOs) are found in almost every living kingdom. Although is one of the few yeast species that lacks an endogenous CAO, heterologous gene expression of CAOs from other organisms produces a functional enzyme. To begin to characterize their function and mechanisms of copper acquisition, two putative genes from were expressed in . Expression of resulted in the production of an active enzyme capable of catalysing the oxidative deamination of primary amines. On the other hand, expression of failed to produce an active CAO. Using a functional fusion allele, the SPAO1 protein was localized in the cytosol. Under copper-limiting conditions, yeast cells harbouring deletions of the , and genes were defective in amine oxidase activity. Likewise, Δ null cells exhibited no CAO activity, while Δ mutant cells exhibited decreased levels of amine oxidase activity, and mutations in Δ and Δ did not cause any defects in this activity. Copper-deprived cells expressing required a functional gene for growth on minimal medium containing ethylamine as the sole nitrogen source. Under these conditions, the inability of the Δ cells to utilize ethylamine correlated with the lack of SPAO1 activity, in spite of the efficient expression of the protein. Cells carrying a disrupted Δ allele exhibited only weak growth on ethylamine medium containing a copper chelator. The results of these studies reveal that expression of the heterologous gene in is required for its growth in medium containing ethylamine as the sole nitrogen source, and that expression of an active SPAO1 protein in depends on the acquisition of copper through the high-affinity copper transporters Ctr1 and Ctr3, and the copper chaperone Atx1.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28998-0
2006-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/9/2819.html?itemId=/content/journal/micro/10.1099/mic.0.28998-0&mimeType=html&fmt=ahah

References

  1. Abajian C, Yatsunyk L. A, Ramirez B. E, Rosenzweig A. C. 2004; Yeast Cox17 solution structure and copper(I) binding. J Biol Chem 279:53584–53592 [CrossRef]
    [Google Scholar]
  2. Banci L, Bertini I, Ciofi-Baffoni S, Huffman D. L, O'Halloran T. V. 2001; Solution structure of the yeast copper transporter domain Ccc2a in the apo and Cu(I)-loaded states. J Biol Chem 276:8415–8426 [CrossRef]
    [Google Scholar]
  3. Beaudoin J, Labbé S. 2001; The fission yeast copper-sensing transcription factor Cuf1 regulates the copper transporter gene expression through an Ace1/Amt1-like recognition sequence. J Biol Chem 276:15472–15480 [CrossRef]
    [Google Scholar]
  4. Beaudoin J, Laliberté J, Labbé S. 2006; Functional dissection of Ctr4 and Ctr5 amino-terminal regions reveals motifs with redundant roles in copper transport. Microbiology 152:209–222 [CrossRef]
    [Google Scholar]
  5. Brachmann C. B, Davies A, Cost G. J, Caputo E, Li J, Hieter P, Boeke J. D. 1998; Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132 [CrossRef]
    [Google Scholar]
  6. Brazeau B. J, Johnson B. J, Wilmot C. M. 2004; Copper-containing amine oxidases. Biogenesis and catalysis; a structural perspective. Arch Biochem Biophys 428:22–31 [CrossRef]
    [Google Scholar]
  7. Brocard C, Kragler F, Simon M. M, Schuster T, Hartig A. 1994; The tetratricopeptide repeat-domain of the PAS10 protein of Saccharomyces cerevisiae is essential for binding the peroxisomal targeting signal-SKL. Biochem Biophys Res Commun 204:1016–1022 [CrossRef]
    [Google Scholar]
  8. Bruun L, Houen G. 1996; In situ detection of diamine oxidase activity using enhanced chemiluminescence. Anal Biochem 233:130–136 [CrossRef]
    [Google Scholar]
  9. Cai D, Klinman J. P. 1994a; Copper amine oxidase: heterologous expression, purification, and characterization of an active enzyme in Saccharomyces cerevisiae . Biochemistry 33:7647–7653 [CrossRef]
    [Google Scholar]
  10. Cai D, Klinman J. P. 1994b; Evidence of a self-catalytic mechanism of 2,4,5-trihydroxyphenylalanine quinone biogenesis in yeast copper amine oxidase. J Biol Chem 269:32039–32042
    [Google Scholar]
  11. Cai D, Williams N. K, Klinman J. P. 1997; Effect of metal on 2,4,5-trihydroxyphenylalanine (topa) quinone biogenesis in the Hansenula polymorpha copper amine oxidase. J Biol Chem 272:19277–19281 [CrossRef]
    [Google Scholar]
  12. Carr H. S, Winge D. R. 2003; Assembly of cytochrome c oxidase within the mitochondrion. Acc Chem Res 36:309–316 [CrossRef]
    [Google Scholar]
  13. Culotta V. C, Klomp L. W, Strain J, Casareno R. L, Krems B, Gitlin J. D. 1997; The copper chaperone for superoxide dismutase. J Biol Chem 272:23469–23472 [CrossRef]
    [Google Scholar]
  14. Dancis A, Klausner R. D, Hinnebusch A. G, Barriocanal J. G. 1990; Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae . Mol Cell Biol 10:2294–2301
    [Google Scholar]
  15. Dancis A, Yuan D. S, Haile D, Askwith C, Eide D, Moehle C, Kaplan J, Klausner R. D. 1994a; Molecular characterization of a copper transport protein in Saccharomyces cerevisiae : an unexpected role for copper in iron transport. Cell 76:393–402 [CrossRef]
    [Google Scholar]
  16. Dancis A, Haile D, Yuan D. S, Klausner R. D. 1994b; The Saccharomyces cerevisiae copper transport protein (Ctr1p): biochemical characterization, regulation by copper, and physiological role in copper uptake. J Biol Chem 269:25660–25667
    [Google Scholar]
  17. Dawkes H. C, Phillips S. E. 2001; Copper amine oxidase: cunning cofactor and controversial copper. Curr Opin Struct Biol 11:666–673 [CrossRef]
    [Google Scholar]
  18. Duff A. P, Cohen A. E, Ellis P. J, Kuchar J. A, Langley D. B, Shepard E. M, Dooley D. M, Freeman H. C, Guss J. M. 2003; The crystal structure of Pichia pastoris lysyl oxidase. Biochemistry 42:15148–15157 [CrossRef]
    [Google Scholar]
  19. Faber K. N, Haima P, Gietl C, Harder W, Ab G, Veenhuis M. 1994; The methylotrophic yeast Hansenula polymorpha contains an inducible import pathway for peroxisomal matrix proteins with an N-terminal targeting signal (PTS2 proteins). Proc Natl Acad Sci U S A 91:12985–12989 [CrossRef]
    [Google Scholar]
  20. Forsburg S. L, Sherman D. A, Ottilie S, Yasuda J. R, Hodson J. A. 1997; Mutational analysis of Cdc19p, a Schizosaccharomyces pombe MCM protein. Genetics 147:1025–1041
    [Google Scholar]
  21. Georgatsou E, Alexandraki D. 1994; Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae . Mol Cell Biol 14:3065–3073
    [Google Scholar]
  22. Glerum D. M, Shtanko A, Tzagoloff A. 1996; Characterization of COX17 , a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J Biol Chem 271:14504–14509 [CrossRef]
    [Google Scholar]
  23. Gurvitz A, Rottensteiner H, Kilpelainen S. H, Hartig A, Hiltunen J. K, Binder M, Dawes I. W, Hamilton B. 1997; The Saccharomyces cerevisiae peroxisomal 2,4-dienoyl-CoA reductase is encoded by the oleate-inducible gene SPS19 . J Biol Chem 272:22140–22147 [CrossRef]
    [Google Scholar]
  24. Harding T. M, Morano K. A, Scott S. V, Klionsky D. J. 1995; Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol 131:591–602 [CrossRef]
    [Google Scholar]
  25. Hassett R, Kosman D. J. 1995; Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae . J Biol Chem 270:128–134 [CrossRef]
    [Google Scholar]
  26. Ho S. N, Hunt H. D, Horton R. M, Pullen J. K, Pease L. R. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59 [CrossRef]
    [Google Scholar]
  27. Horng Y. C, Cobine P. A, Maxfield A. B, Carr H. S, Winge D. R. 2004; Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome c oxidase. J Biol Chem 279:35334–35340 [CrossRef]
    [Google Scholar]
  28. Jalkanen S, Salmi M. 2001; Cell surface monoamine oxidases: enzymes in search of a function. EMBO J 20:3893–3901 [CrossRef]
    [Google Scholar]
  29. Knight S. A, Kwon L. F, Kosman D. J, Thiele D. J, Labbé S. 1996; A widespread transposable element masks expression of a yeast copper transport gene. Genes Dev 10:1917–1929 [CrossRef]
    [Google Scholar]
  30. Kumar V, Dooley D. M, Freeman H. C, Guss J. M, Harvey I, McGuirl M. A, Wilce M. C, Zubak V. M. 1996; Crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 A resolution. Structure 4:943–955 [CrossRef]
    [Google Scholar]
  31. Labbé S, Zhu Z, Thiele D. J. 1997; Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transport pathway. J Biol Chem 272:15951–15958 [CrossRef]
    [Google Scholar]
  32. Laliberté J, Whitson L. J, Beaudoin J, Holloway S. P, Hart P. J, Labbé S. 2004; The Schizosaccharomyces pombe pccs protein functions in both copper trafficking and metal detoxification pathways. J Biol Chem 279:28744–28755 [CrossRef]
    [Google Scholar]
  33. Large P. J. 1986; Degradation of organic nitrogen compounds by yeasts. Yeast 2:1–34 [CrossRef]
    [Google Scholar]
  34. Li R, Klinman J. P, Mathews F. S. 1998; Copper amine oxidase from Hansenula polymorpha : the crystal structure determined at 2.4 A resolution reveals the active conformation. Structure 6:293–307 [CrossRef]
    [Google Scholar]
  35. Lin S. J, Pufahl R. A, Dancis A, O'Halloran T. V, Culotta V. C. 1997; A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 272:9215–9220 [CrossRef]
    [Google Scholar]
  36. Lunelli M, Di Paolo M. L, Biadene M, Calderone V, Battistutta R, Scarpa M, Rigo A, Zanotti G. 2005; Crystal structure of amine oxidase from bovine serum. J Mol Biol 346:991–1004 [CrossRef]
    [Google Scholar]
  37. Martins L. J, Jensen L. T, Simon J. R, Keller G. L, Winge D. R. 1998; Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae . J Biol Chem 273:23716–23721 [CrossRef]
    [Google Scholar]
  38. Matsunami H, Okajima T, Hirota S, Yamaguchi H, Hori H, Mure M, Kuroda S, Tanizawa K. 2004; Chemical rescue of a site-specific mutant of bacterial copper amine oxidase for generation of the topa quinine cofactor. Biochemistry 43:2178–2187 [CrossRef]
    [Google Scholar]
  39. Mumberg D, Muller R, Funk M. 1995; Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122 [CrossRef]
    [Google Scholar]
  40. Mure M, Brown D. E, Saysell C. 7 other authors 2005; Role of the interactions between the active site base and the substrate Schiff base in amine oxidase catalysis. Evidence from structural and spectroscopic studies of the 2-hydrazinopyridine adduct of Escherichia coli amine oxidase. Biochemistry 44:1568–1582 [CrossRef]
    [Google Scholar]
  41. Neuberger G, Maurer-Stroh S, Eisenhaber B, Hartig A, Eisenhaber F. 2003a; Motif refinement of the peroxisomal targeting signal 1 and evaluation of taxon-specific differences. J Mol Biol 328:567–579 [CrossRef]
    [Google Scholar]
  42. Neuberger G, Maurer-Stroh S, Eisenhaber B, Hartig A, Eisenhaber F. 2003b; Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence. J Mol Biol 328:581–592 [CrossRef]
    [Google Scholar]
  43. O'Halloran T. V, Culotta V. C. 2000; Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060 [CrossRef]
    [Google Scholar]
  44. Parsons M. R, Convery M. A, Wilmot C. M, Yadav K. D, Blakeley V, Corner A. S, Phillips S. E, McPherson M. J, Knowles P. F. 1995; Crystal structure of a quinoenzyme: copper amine oxidase of Escherichia coli at 2 A resolution. Structure 3:1171–1184 [CrossRef]
    [Google Scholar]
  45. Peña M. M, Lee J, Thiele D. J. 1999; A delicate balance: homeostatic control of copper uptake and distribution. J Nutr 129:1251–1260
    [Google Scholar]
  46. Peña M. M, Puig S, Thiele D. J. 2000; Characterization of the Saccharomyces cerevisiae high-affinity copper transporter Ctr3. J Biol Chem 275:33244–33251 [CrossRef]
    [Google Scholar]
  47. Petriv O. I, Tang L, Titorenko V. I, Rachubinski R. A. 2004; A new definition for the consensus sequence of the peroxisome targeting signal type 2. J Mol Biol 341:119–134 [CrossRef]
    [Google Scholar]
  48. Portnoy M. E, Rosenzweig A. C, Rae T, Huffman D. L, O'Halloran T. V, Culotta V. C. 1999; Structure-function analyses of the Atx1 metallochaperone. J Biol Chem 274:15041–15045 [CrossRef]
    [Google Scholar]
  49. Pufahl R. A, Singer C. P, Peariso K. L, Lin S. J, Schmidt P. J, Fahrni C. J, Culotta V. C, Penner-Hahn J. E, O'Halloran T. V. 1997; Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278:853–856 [CrossRef]
    [Google Scholar]
  50. Puig S, Thiele D. J. 2002a; Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171–180 [CrossRef]
    [Google Scholar]
  51. Puig S, Lee J, Lau M, Thiele D. J. 2002b; Biochemical and genetic analyses of yeast and human high-affinity copper transporters suggest a conserved mechanism for copper uptake. J Biol Chem 277:26021–26030 [CrossRef]
    [Google Scholar]
  52. Rees E. M, Thiele D. J. 2004; From aging to virulence: forging connections through the study of copper homeostasis in eukaryotic microorganisms. Curr Opin Microbiol 7:175–184 [CrossRef]
    [Google Scholar]
  53. Rehling P, Marzioch M, Niesen F, Wittke E, Veenhuis M, Kunau W. H. 1996; The import receptor for the peroxisomal targeting signal 2 (PTS2) in Saccharomyces cerevisiae is encoded by the PAS7 gene. EMBO J 15:2901–2913
    [Google Scholar]
  54. Reumann S. 2004; Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses. Plant Physiol 135:783–800 [CrossRef]
    [Google Scholar]
  55. Rosenzweig A. C, Huffman D. L, Hou M. Y, Wernimont A. K, Pufahl R. A, O'Halloran T. V. 1999; Crystal structure of the Atx1 metallochaperone protein at 1.02 A resolution. Structure 7:605–617 [CrossRef]
    [Google Scholar]
  56. Rymond B. C, Zitomer R. S, Schumperli D, Rosenberg M. 1983; The expression in yeast of the Escherichia coli galK gene on CYC1 : : GalK fusion plasmids. Gene 25:249–262 [CrossRef]
    [Google Scholar]
  57. Samuels N. M, Klinman J. P. 2005; 2,4,5-trihydroxyphenylalanine quinone biogenesis in the copper amine oxidase from Hansenula polymorpha with the alternate metal nickel. Biochemistry 44:14308–14317 [CrossRef]
    [Google Scholar]
  58. Sherman F. 1991; Getting started with yeast. Methods Enzymol 194:3–21
    [Google Scholar]
  59. Veenhuis M, Mateblowski M, Kunau W. H, Harder W. 1987; Proliferation of microbodies in Saccharomyces cerevisiae . Yeast 3:77–84 [CrossRef]
    [Google Scholar]
  60. Yu P. H, Wright S, Fan E. H, Lun Z. R, Gubisne-Harberle D. 2003; Physiological and pathological implications of semicarbazide-sensitive amine oxidase. Biochim Biophys Acta 1647193–199 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28998-0
Loading
/content/journal/micro/10.1099/mic.0.28998-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error