1887

Abstract

The complete 41 268 bp nucleotide sequence of the IncP-1 plasmid pBP136 from the human pathogen , the primary aetiological agent of whooping cough, was determined and analysed. This plasmid carried a total of 46 ORFs: 44 ORFs corresponding to the genes in the conserved IncP-1 backbone, and 2 ORFs similar to the and genes with unknown function of the plant pathogen . Interestingly, pBP136 had no accessory genes carrying genetic traits such as antibiotic or mercury resistance and/or xenobiotic degradation. Moreover, pBP136 had only two of the genes () that have been reported to be important for the stability of IncP-1 plasmid in . Phylogenetic analysis of the Kle proteins revealed that the KleA and KleE of pBP136 were phylogenetically distant from those of the present IncP-1 plasmids. In contrast, IncC1 and KorC, encoded upstream and downstream of the genes respectively, and the replication-initiation protein, TrfA, were closely related to those of the IncP-1 ‘R751 group’. These results suggest that (i) pBP136 without any apparent accessory genes diverged early from an ancestor of the present IncP-1 plasmids, especially those of the R751 group, and (ii) the genes might be incorporated independently into the backbone region of the IncP-1 plasmids for their stable maintenance in various host cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29056-0
2006-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/12/3477.html?itemId=/content/journal/micro/10.1099/mic.0.29056-0&mimeType=html&fmt=ahah

References

  1. Adamczyk M, Jagura-Burdzy G. 2003; Spread and survival of promiscuous IncP-1 plasmids. Acta Biochim Pol 50:425–453
    [Google Scholar]
  2. Adamczyk M, Dolowy P, Jonczyk M, Thomas C. M, Jagura-Burdzy G. 2006; The kfrA gene is the first in a tricistronic operon required for survival of IncP-1 plasmid R751. Microbiology 152:1621–1637 [CrossRef]
    [Google Scholar]
  3. Altschul S. F, Madden T. L, Zhang Z, Miller W, Lipman D. J, Schäffer A. A. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  4. Antoine R, Locht C. 1992; Isolation and molecular characterization of a novel broad-host-range plasmid from Bordetella bronchiseptica with sequence similarities to plasmids from gram-positive organisms. Mol Microbiol 6:1785–1799 [CrossRef]
    [Google Scholar]
  5. Ausubel F. M, Brent R, Kingston R. E, Moore D. D, Seidman J. G, Smith J. A, Struhl K. 1987 Current Protocols in Molecular Biology New York: Wiley;
  6. Bergstrom C. T, Lipsitch M, Levin B. R. 2000; Natural selection, infectious transfer and the existence conditions for bacterial plasmids. Genetics 155:1505–1519
    [Google Scholar]
  7. Chang C. J, Garnier M, Zreik L, Rossetti V, Bové J. M. 1993; Culture and serological detection of the xylem-limited bacterium causing citrus variegated chlorosis and its identification as a strain of Xylella fastidiosa . Curr Microbiol 27:137–142 [CrossRef]
    [Google Scholar]
  8. Dennis J. J. 2005; The evolution of IncP catabolic plasmids. Curr Opin Biotechnol 16:291–298 [CrossRef]
    [Google Scholar]
  9. Ghigo J.-M. 2001; Natural conjugative plasmids induce bacterial biofilm development. Nature 412:442–445 [CrossRef]
    [Google Scholar]
  10. Graham A. C, Abruzzo G. K. 1982; Occurrence and characterization of plasmids in field isolates of Bordetella bronchiseptica . Am J Vet Res 43:1852–1855
    [Google Scholar]
  11. Harada K. M, Aso Y, Hashimoto W, Mikami B, Murata K. 2006; Sequence and analysis of the 46.6-kb plasmid pA1 from Sphingomonas sp. A1 that corresponds to the typical IncP-1 β plasmid backbone without any accessory gene. Plasmid 56:11–23 [CrossRef]
    [Google Scholar]
  12. Hedges R. W, Jacob A. E, Smith J. T. 1974; Properties of an R factor from Bordetella bronchiseptica . J Gen Microbiol 84:199–204 [CrossRef]
    [Google Scholar]
  13. Heuer H, Szczepanowski R, Schneiker S, Top E. M, Pühler A, Schlüter A. 2004; The complete sequences of plasmids pB2 and pB3 provide evidence for a recent ancestor of the IncP-1 β group without any accessory genes. Microbiology 150:3591–3599 [CrossRef]
    [Google Scholar]
  14. Houard S, Hackel C, Herzog A, Bollen A. 1989; Specific identification of Bordetella pertussis by the polymerase chain reaction. Res Microbiol 140:477–487 [CrossRef]
    [Google Scholar]
  15. Imaizumi A, Suzuki Y, Ono S, Sato H, Sato Y. 1983; Effect of heptakis(2,6- O -dimethyl)beta-cyclodextrin on the production of pertussis toxin by Bordetella pertussis . Infect Immun 41:1138–1143
    [Google Scholar]
  16. Kodama A, Kamachi K, Horiuchi Y, Konda T, Arakawa Y. 2004; Antigenic divergence suggested by correlation between antigenic variation and pulsed-field gel electrophoresis profiles of Bordetella pertussis isolates in Japan. J Clin Microbiol 42:5453–5457 [CrossRef]
    [Google Scholar]
  17. Lax A. J, Walker C. A. 1986; Plasmids related to RSF1010 from Bordetella bronchiseptica . Plasmid 15:210–216 [CrossRef]
    [Google Scholar]
  18. Li W. B, Zreik L, Fernandes N. G, Miranda V. S, Teixeria D. C, Ayres A. J, Garnier M, Bové J. M. 1999; A triply cloned strain of Xylella fastidiosa multiplies and induces symptoms of citrus variegated chlorosis in sweet orange. Curr Microbiol 39:106–108 [CrossRef]
    [Google Scholar]
  19. Martinez B, Tomkins J, Wackett L. P, Wing R, Sadowski M. J. 2001; Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 183:5684–5697 [CrossRef]
    [Google Scholar]
  20. Mooi F. R, Hallander H, Hoet B, Guiso N, Wirsing von König C. H. 2000; Epidemiological typing of Bordetella pertussis isolates: recommendations for a standard methodology. Eur J Clin Infect Dis 13:174–181
    [Google Scholar]
  21. Pansegrau W, Lanka E, Barth P. T. 7 other authors 1994; Complete nucleotide sequence of Birmingham IncP α plasmids compilation and comparative analysis. J Mol Biol 239:623–663 [CrossRef]
    [Google Scholar]
  22. Schlüter A, Heuer H, Szczepanowski R, Forney L. J, Thomas C. M, Top E. M, Pühler A. 2003; The 64 508 bp IncP-1 β antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1 β group. Microbiology 149:3139–3153 [CrossRef]
    [Google Scholar]
  23. Schlüter A, Heuer H, Szczepanowski R, Poler S. M, Schneiker S, Top E. M, Pühler A. 2005; Plasmid pB8 is closely related to the prototype IncP-1 β plasmid R751 but transfers poorly to Escherichia coli and carries a new transposon encoding a small multidrug resistance efflux protein. Plasmid 54:135–148 [CrossRef]
    [Google Scholar]
  24. Shimizu M, Kuninori K, Inoue M, Mitsuhashi S. 1981; Drug resistance and R plasmids in Bordetella bronchiseptica isolates from pigs. Microbiol Immunol 25:773–786 [CrossRef]
    [Google Scholar]
  25. Shimpson A. J, Reinach F. C, Arruda P. 113 other authors 2000; The genome sequence of the plant pathogen Xylella fastidiosa . The Xylella fastidiosa consortium of the organization for nucleotide sequencing and analysis. Nature 406:151–157 [CrossRef]
    [Google Scholar]
  26. Smith C. J, Coote J. G, Parton R. 1986; R-plasmid-mediated chromosome mobilization in Bordetella pertussis . J Gen Microbiol 132:2685–2692
    [Google Scholar]
  27. Sota M, Kawasaki H, Tsuda M. 2003; Structure of haloacetate-catabolic IncP-1 β plasmid pUO1 and genetic mobility of its residing haloacetate-catabolic transposon. J Bacteriol 185:6741–6745 [CrossRef]
    [Google Scholar]
  28. Speakman A. J, Binns S. H, Osborn A. M, Corkill J. E, Kariuki S, Saunders J. R, Dawson S, Graskell R. M, Hart C. A. 1997; Characterization of antibiotic resistance plasmids from Bordetella bronchiseptica . J Antimicrob Chemother 40:811–816 [CrossRef]
    [Google Scholar]
  29. Tauch A, Bischott N, Goesmann A, Meyer F, Schlüter A, Pühler A. 2003; The 79,370-bp conjugative plasmid pB4 consists of an IncP-1 β backbone loaded with a chromate resistance transposon, the strA-strB streptomycin resistance gene pair, the oxacillinase gene bla NPS-1, and a tripartite antibiotic efflux system of the resistance-nodulation-division family. Mol Gen Genomics 268:570–584
    [Google Scholar]
  30. Tennstedt T, Szczepanowski R, Krahan I, Pühler A, Schlüter A. 2005; Sequence of the 68,869 bp IncP- α plasmid pTB11 from a waste-water treatment plant reveals a highly conserved backbone, a Tn 402 -like integron and other transposable elements. Plasmid 53:218–238 [CrossRef]
    [Google Scholar]
  31. Terakado N, Mitsuhashi S. 1974; Properties of R factors from Bordetella bronchiseptica . Antimicrob Agents Chemother 6:836–840 [CrossRef]
    [Google Scholar]
  32. Terakado N, Azechi H, Ninomiya K, Shimizu T. 1973; Demonstration of R factors in Bordetella bronchiseptica isolated from pigs. Antimicrob Agents Chemther 3:555–558 [CrossRef]
    [Google Scholar]
  33. Thomas C. M. 2000; Paradigms of plasmid organization. Mol Microbiol 37:485–491
    [Google Scholar]
  34. Thomas C. M, Smith C. A. 1987; Incompatibility group P plasmids: genetics, evolution, and use in genetic manipulation. Annu Rev Microbiol 41:77–101 [CrossRef]
    [Google Scholar]
  35. Thorsted P. B, Macartney D. P, Akhtar P. 9 other authors 1998; Complete sequence of the IncP β plasmid R751: implications for evolution and organization of the IncP backbone. J Mol Biol 282:969–990 [CrossRef]
    [Google Scholar]
  36. Top E. M, Springael D. 2003; The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14:262–269 [CrossRef]
    [Google Scholar]
  37. Trefault N, De Ia Iglesis R, Molina A. M, Manzano M, Ledger T, Stuardo M, Pérez-Pantoja D, Sánchez M. A, González B. 2004; Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. Environ Microbiol 6:655–668 [CrossRef]
    [Google Scholar]
  38. Vedler E, Vahter M, Heinaru A. 2004; The completely sequenced plasmid pEST4011 contains a novel IncP1 backbone and a catabolic transposon harboring tfd genes for 2,4-dichlorophenoxyacetic acid degradation. J Bacteriol 186:7161–7174 [CrossRef]
    [Google Scholar]
  39. Weiss A. A, Falkow S. 1982; Plasmid transfer to Bordetella pertussis : conjugation and transformation. J Bacteriol 152:549–552
    [Google Scholar]
  40. Wilson J. W, Sia E. A, Figurski D. H. 1997; The kilE locus of promiscuous IncP α plasmid RK2 is required for stable maintenance in Pseudomonas aeruginosa . J Bacteriol 179:2339–2347
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29056-0
Loading
/content/journal/micro/10.1099/mic.0.29056-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error