1887

Abstract

The extracellular matrix produced by B-1, an environmental strain that forms robust floating biofilms, was purified, and determined to be composed predominantly of -polyglutamate (-PGA), with a molecular mass of over 1000 kDa. Both biofilm formation and -PGA production by B-1 increased with increasing Mn or glycerol concentration. -PGA was produced in a growth-associated manner in standing culture, and floating biofilms were formed. However, -PGA was produced in a non-growth-associated manner in shaking culture conditions. When B-1 was grown in a microaerated culture system, floating biofilm formation and -PGA production were significantly retarded, suggesting that oxygen depletion is involved in the initial steps of floating biofilm formation in standing culture. Proteomic analysis of membrane proteins demonstrated that flagellin, oligopeptide permease and Vpr protease precursor were the major proteins produced by cells in a floating biofilm and a colony.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29060-0
2006-09-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/9/2801.html?itemId=/content/journal/micro/10.1099/mic.0.29060-0&mimeType=html&fmt=ahah

References

  1. Boyd A, Chakrabarty A. M. 1995; Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide. J Ind Microbiol 15:162–168 [CrossRef]
    [Google Scholar]
  2. Branda S. S, Gonzalez-Pastor J. E, Ben-Yehuda S, Losick R, Kolter R. 2001; Fruiting body formation by Bacillus subtilis . Proc Natl Acad Sci U S A 98:11621–11626 [CrossRef]
    [Google Scholar]
  3. Branda S. S, Vik S. L, Friedman L, Kolter R. 2005; Biofilms: the matrix revisited. Trends Microbiol 13:20–26 [CrossRef]
    [Google Scholar]
  4. Canals R, Altarriba M, Vilches S, Horsburgh G, Shaw J. G, Tomas J. M, Merino S. 2006; Analysis of the lateral flagellar gene system of Aeromonas hydrophila AH-3. J Bacteriol 188:852–862 [CrossRef]
    [Google Scholar]
  5. Chagneau C, Saier M. H. Jr 2004; Biofilm-defective mutants of Bacillus subtilis . J Mol Microbiol Biotechnol 8:177–188 [CrossRef]
    [Google Scholar]
  6. Comella N, Grossman A. D. 2005; Conservation of genes and processes controlled by the quorum response in bacteria: characterization of genes contolled by the quorum-sensing transcription factor ComA in Bacillus subtilis . Mol Microbiol 57:1159–1174 [CrossRef]
    [Google Scholar]
  7. Cromwick A. M, Gross R. A. 1995; Effects of manganese (II) on Bacillus licheniformis ATCC 9945A physiology and gamma-poly(glutamic acid) formation. Int J Biol Macromol 17:259–267 [CrossRef]
    [Google Scholar]
  8. Cromwick A.-M, Birrer G. A, Gross R. A. 1996; Effects of pH and aeration on γ -poly(glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures. Biotechnol Bioeng 50:222–227 [CrossRef]
    [Google Scholar]
  9. Danese P. N, Pratt L. A, Kolter R. 2000; Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 182:3593–3596 [CrossRef]
    [Google Scholar]
  10. Friedman L, Kolter R. 2004; Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186:4457–4465 [CrossRef]
    [Google Scholar]
  11. Glauert A. M. 1975; Fixation, dehydration, and embedding of biological specimens. In Practical Methods in Electron Microscopy Edited by Glauert A. M. Amsterdam: North Holland;
    [Google Scholar]
  12. Hamon M. A, Lazazzera B. A. 2001; The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis . Mol Microbiol 42:1199–1209
    [Google Scholar]
  13. Itaya M, Matsui K. 1999; Conversion of Bacillus subtilis 168: Natto producing Bacillus subtilis with mosaic genomes. Biosci Biotechnol Biochem 63:2034–2037 [CrossRef]
    [Google Scholar]
  14. Kearns D. B, Chu F, Branda S. S, Kolter R, Losick R. 2005; A master regulator for biofilm formation by Bacillus subtilis . Mol Microbiol 55:739–749
    [Google Scholar]
  15. Kiska D. L, Macrina F. L. 1994; Genetic analysis of fructan-hyperproducing strains of Streptococcus mutans . Infect Immun 62:2679–2686
    [Google Scholar]
  16. Ko Y. H, Gross R. A. 1998; Effects of glucose and glycerol on gamma-poly(glutamic acid) formation by Bacillus licheniformis ATCC 9945a. Biotechnol Bioeng 57:430–437 [CrossRef]
    [Google Scholar]
  17. Lazazzera B. A. 2000; Quorum sensing and starvation: signals for entry into stationary phase. Curr Opin Microbiol 3:177–182 [CrossRef]
    [Google Scholar]
  18. Lazazzera B. A. 2006; Production of Peptide Signaling Molecules by Bacillus subtilis. Presentation at the 106th American Society for Microbiology meeting, May 24 2006 Orlando, FL. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. May T. B, Chakrabarty A. M. 1994; Isolation and assay of Pseudomonas aeruginosa alginate. Methods Enzymol 235:295–304
    [Google Scholar]
  20. Morikawa M, Ito M, Imanaka T. 1992; Isolation of a new surfactin producer Bacillus pumilus A-1, and cloning and nucleotide sequence of the regulator gene, psf-1 . J Ferment Bioeng 74:255–261
    [Google Scholar]
  21. O'Neill M. A, Morris V. J, Selvendran R. R, Sutherland I. W, Taylor I. T. 1986; Structure of the extracellular gelling polysaccharide produced by Enterobacter (NCIB 11870) species. Carbohydr Res 148:63–69 [CrossRef]
    [Google Scholar]
  22. O'Toole G. A, Pratt L. A, Watnick P. I, Newman D. K, Weaver V. B, Kolter R. 1999; Genetic approaches to study of biofilms. Methods Enzymol 310:91–109
    [Google Scholar]
  23. O'Toole G, Kaplan H. B, Kolter R. 2000; Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79 [CrossRef]
    [Google Scholar]
  24. Parsek M. R, Greenberg E. P. 2005; Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13:27–33 [CrossRef]
    [Google Scholar]
  25. Ren D, Bedzyk L. A, Setlow P, Thomas S. M, Ye R. W, Wood T. K. 2004; Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yveR for biofilm maintenance. Biotechnol Bioeng 86:344–364 [CrossRef]
    [Google Scholar]
  26. Stanley N. R, Lazazzera B. A. 2005; Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gamma- dl-glutamic acid production and biofilm formation. Mol Microbiol 57:1143–1158 [CrossRef]
    [Google Scholar]
  27. Stanley N. R, Britton R. A, Grossman A. D, Lazazzera B. A. 2003; Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol 185:1951–1957 [CrossRef]
    [Google Scholar]
  28. Wai S. N, Mizunoe Y, Takade A, Kawabata S. I, Yoshida S. I. 1998; Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation. Appl Environ Microbiol 64:3648–3655
    [Google Scholar]
  29. Yamazaki M, Thorne L, Mikolajczak M, Armentrout R. W, Pollock T. J. 1996; Linkage of genes essential for synthesis of a polysaccharide capsule in Sphingomonas strain S88. J Bacteriol 178:2676–2687
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29060-0
Loading
/content/journal/micro/10.1099/mic.0.29060-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error