1887

Abstract

This study demonstrates that attachment of the marine bacterium to the cellulose-containing surface of the green alga is mediated by a mannose-sensitive haemagglutinin (MSHA-like) pilus. We have identified an MSHA pilus biogenesis gene locus in , termed , which shows significant homology, with respect to its genetic characteristics and organization, to the MSHA pilus biogenesis gene locus of . Electron microscopy studies revealed that wild-type cells express flexible pili peritrichously arranged on the cell surface. A mutant (SM5) with a transposon insertion in the region displayed a non-piliated phenotype. Using SM5, it has been demonstrated that the MSHA pilus promotes attachment of wild-type cells in polystyrene microtitre plates, as well as to microcrystalline cellulose and to the living surface of . also demonstrated increased pilus production in response to cellulose and its monomer constituent cellobiose. The MSHA pilus thus functions as a determinant of attachment in , and it is proposed that an understanding of surface sensing mechanisms displayed by will provide insight into specific ecological interactions that occur between this bacterium and higher marine organisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29158-0
2006-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/10/2875.html?itemId=/content/journal/micro/10.1099/mic.0.29158-0&mimeType=html&fmt=ahah

References

  1. Alm R. A, Mattick J. S. 1997; Genes involved in the biogenesis and function of type-4 fimbriae in Pseudomonas aeruginosa . Gene 192:89–98 [CrossRef]
    [Google Scholar]
  2. Altschul S. F, Gish W, Miller W, Meyers E. W, Lipman D. J. 1990; Basic Local Alignment Search Tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  3. Bagdasarian M, Lurz R, Ruckert B, Franklin F. C, Bagdasarian M. M, Frey J, Timmis K. N. 1981; Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host–vector system for gene cloning in Pseudomonas . Gene 16:237–247 [CrossRef]
    [Google Scholar]
  4. Bayer E, Kenig R, Lamed R. 1983; Adherence of Clostridium thermocellum to cellulose. J Bacteriol 156:818–827
    [Google Scholar]
  5. Boyd J. M. 2000; Localization of the histidine kinase PilS to the poles of Pseudomonas aeruginosa and identification of a localization domain. Mol Microbiol 36:153–162 [CrossRef]
    [Google Scholar]
  6. Bryers J, Characklis W. 1982; Processes governing primary biofilm formation. Biotechnol Bioeng 24:2451–2476 [CrossRef]
    [Google Scholar]
  7. Chapman A. R. O. 1979 Biology of Seaweeds: Levels of Organization Baltimore, MD: University Park Press;
    [Google Scholar]
  8. Chiavelli D. A, Marsh J. W, Taylor R. K. 2001; The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Appl Environ Microbiol 67:3220–3225 [CrossRef]
    [Google Scholar]
  9. Cormack B. P, Valdivia R. H, Falkow S. 1996; FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38 [CrossRef]
    [Google Scholar]
  10. De Leo G, Patricolo E, D'Ancona-Lunetta G. 1977; Studies on the fibrous components of the test of Ciona intestinalis Linnaes. Cellulose-like polysaccharide. Acta Zoo 58:135–141 [CrossRef]
    [Google Scholar]
  11. de Nys R, Steinberg P, Willemsen P, Dworjanyn S, Gabelish C, King R. 1995; Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling 8:259–271 [CrossRef]
    [Google Scholar]
  12. Egan S, Thomas T, Holmström C, Kjelleberg S. 2000; Phylogenetic relationship and antifouling activities of bacterial epiphytes from the marine alga Ulva lactuca . Environ Microbiol 2:343–347 [CrossRef]
    [Google Scholar]
  13. Egan S, Holmström C, Kjelleberg S. 2001a; Pseudoalteromonas ulvae sp. nov., a bacterium with antifouling activities isolated from the surface of a marine alga. Int J Syst Evol Microbiol 51:1499–1504
    [Google Scholar]
  14. Egan S, James S, Holmström C, Kjelleberg S. 2001b; Inhibition of algal spore germination by the marine bacterium Pseudoalteromonas tunicata . FEMS Microbiol Ecol 35:67–73 [CrossRef]
    [Google Scholar]
  15. Egan S, James S, Holmström C, Kjelleberg S. 2002a; Correlation between pigmentation and antifouling compounds produced by Pseudoalteromonas tunicata . Environ Microbiol 4:433–442 [CrossRef]
    [Google Scholar]
  16. Egan S, James S, Kjelleberg S. 2002b; Identification and characterization of a putative transcriptional regulator controlling the expression of fouling inhibitors in Pseudoalteromonas tunicata . Appl Environ Microbiol 68:372–378 [CrossRef]
    [Google Scholar]
  17. Gardel C, Mekalanos J. 1996; Alterations in Vibrio cholerae motility phenotypes correlate with changes in virulence factor expression. Infect Immun 64:2246–2255
    [Google Scholar]
  18. Harrison P. 1992; Control of microbial growth and of amphipod gazing by water-soluble compounds from leaves of Zostera marina . Mar Biol 67:25–30
    [Google Scholar]
  19. Hase C. C, Bauer M. E, Finkelstein R. A. 1994; Genetic characterization of mannose-sensitive hemagglutinin (MSHA)-negative mutants of Vibrio cholerae derived by Tn 5 mutagenesis. Gene 150:17–25 [CrossRef]
    [Google Scholar]
  20. Hobbs M, Collie E, Free P, Livingston S, Mattick J. 1993; PilS and PilR, a two component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa . Mol Microbiol 7:669–682 [CrossRef]
    [Google Scholar]
  21. Holmström C., Kjelleberg S. 1999; Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30:285–293 [CrossRef]
    [Google Scholar]
  22. Holmström C, Rittschof D, Kjelleberg S. 1992; Inhibition of settlement by larvae of Balanus amphitrite and Ciona intestinalis by a surface-colonizing marine bacterium. Appl Environ Microbiol 58:2111–2115
    [Google Scholar]
  23. Holmström C, James S, Egan S, Kjelleberg S. 1996; Inhibition of common fouling organisms by marine bacterial isolates with special reference to the role of pigmented bacteria. Biofouling 10:251–259 [CrossRef]
    [Google Scholar]
  24. Holmström C, James S, Neilan B, White D, Kjelleberg S. 1998; Pseudoalteromonas tunicata sp. nov., a bacterium that produces antifouling agents. Int J Syst Bacteriol 48:1205–1212 [CrossRef]
    [Google Scholar]
  25. Holmström C, Egan S, Franks A, McCloy S, Kjelleberg S. 2002; Antifouling activities expressed by marine surface associated Pseudoalteromonas species . FEMS Microbiol Ecol 41:47–58 [CrossRef]
    [Google Scholar]
  26. James S, Holmström C, Kjelleberg S. 1996; Purification and characterization of a novel antibacterial protein from the marine bacterium D2. Appl Environ Microbiol 62:2783–2788
    [Google Scholar]
  27. Jonson G, Holmgren J, Svennerholm A. 1991; Identification of a mannose-binding pilus on Vibrio cholerae El Tor. Microb Pathog 11:433–441 [CrossRef]
    [Google Scholar]
  28. Marden P, Tunlid A, Malmcrona-Friberg K, Odham G, Kjelleberg S. 1985; Physiological and morphological changes during short term starvation of marine bacterial isolates. Arch Microbiol 142:326–332 [CrossRef]
    [Google Scholar]
  29. Marsh J. W, Taylor R. K. 1999; Genetic and transcriptional analyses of the Vibrio cholerae mannose-sensitive hemagglutinin type 4 pilus gene locus. J Bacteriol 181:1110–1117
    [Google Scholar]
  30. Martin P, Watson A, McCaul T, Mattick J. 1995; Characterization of a five-gene cluster required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa . Mol Microbiol 16:497–508 [CrossRef]
    [Google Scholar]
  31. Mary A, Mary V, Rittschof D, Nagabhushanam R. 1993; Bacterial–barnacle interaction: potential for using juncellins and antibiotics to alter structure of bacterial communities. J Chem Ecol 19:2155–2167 [CrossRef]
    [Google Scholar]
  32. Mathews C. K, van Holde K. E. 1990 Biochemistry Redwood City, CA: The Benjamin/Cummings Publishing Company;
    [Google Scholar]
  33. Maximilien R, de Nys R, Holmström C, Gram L, Givskov M, Crass K, Kjelleberg S, Steinberg P. 1995; Chemical mediation of bacterial surface colonization by secondary metabolites from red algal Delisea pulchra . Aquat Microb Ecol 15:233–246
    [Google Scholar]
  34. Morand P. C, Tattevin P, Eugene E, Beretti J.-L, Nassif X. 2001; The adhesive property of the type IV pilus-associated component PilC1 of pathogenic Neisseria is supported by the conformational structure of the N-terminal part of the molecule. Mol Microbiol 40:846–856 [CrossRef]
    [Google Scholar]
  35. Neidhardt F, Bloch P, Smith D. 1974; Culture medium for enterobacteria. J Bacteriol 119:736–747
    [Google Scholar]
  36. O'Toole G. A, Kolter R. 1998; Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304 [CrossRef]
    [Google Scholar]
  37. Rao D, Webb J. S, Kjelleberg S. 2005; Competitive interactions in mixed-species biofilms containing the marine bacterium Pseudoalteromonas tunicata . Appl Environ Microbiol 71:1729–1736 [CrossRef]
    [Google Scholar]
  38. Rao D, Webb J. S, Kjelleberg S. 2006; Microbial colonization and competition on the marine alga Ulva australis . Appl Environ Microbiol 72:5547–5555 [CrossRef]
    [Google Scholar]
  39. Reese M. 2001; Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comp Chem 26:51–56 [CrossRef]
    [Google Scholar]
  40. Strom M. S, Lory S. 1993; Structure–function and biogenesis of the type IV pili. Annu Rev Microbiol 47:565–596 [CrossRef]
    [Google Scholar]
  41. Taylor C. M, Beresford M, Epton H. A. S, Sigee D. C, Shama G, Andrew P. W, Roberts I. S. 2002; Listeria monocytogenes relA and hpt mutants are impaired in surface-attached growth and virulence. J Bacteriol 184:621–628 [CrossRef]
    [Google Scholar]
  42. Tillett D, Neilan B. A. 1999; n -Butanol purification of dye terminator sequencing reactions. Biotechniques 26:606–608 610
    [Google Scholar]
  43. Watnick P. I, Kolter R. 1999; Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34:586–595 [CrossRef]
    [Google Scholar]
  44. Watnick P. I, Fullner K. J, Kolter R. 1999; A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J Bacteriol 181:3606–3609
    [Google Scholar]
  45. Zampini M, Canesi L, Betti M, Ciacci C, Tarsi R, Gallo G, Pruzzo C. 2003; Role for mannose-sensitive hemagglutinin in promoting interactions between Vibrio cholerae El Tor and mussel hemolymph. Appl Environ Microbiol 69:5711–5715 [CrossRef]
    [Google Scholar]
  46. Zolfaghar I, Evans D. J, Fleiszig S. M. J. 2003; Twitching motility contributes to the role of pili in corneal infection caused by Pseudomonas aeruginosa . Infect Immun 71:5389–5393 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29158-0
Loading
/content/journal/micro/10.1099/mic.0.29158-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error