1887

Abstract

is the causative agent of melioidosis, a fatal human tropical disease. The non-specific DNA-binding protein DpsA plays a key role in protecting from oxidative stress mediated, for example, by organic hydroperoxides. The regulation of expression is poorly understood but one possibility is that it is regulated in a cell population density-dependent manner via -acylhomoserine lactone (AHL)-dependent quorum sensing (QS) since a -box motif has been located within the promoter region. Using liquid chromatography and tandem mass spectrometry, it was first established that strain PP844 synthesizes AHLs. These were identified as -octanoylhomoserine lactone (C8-HSL), -(3-oxooctanoyl)homoserine lactone (3-oxo-C8-HSL), -(3-hydroxyoctanoyl)-homoserine lactone (3-hydroxy-C8-HSL), -decanoylhomoserine lactone (C10-HSL), -(3-hydroxydecanoyl) homoserine lactone (3-hydroxy-C10-HSL) and -(3-hydroxydodecanoyl)homoserine lactone (3-hydroxy-C12-HSL). Mutation of the genes encoding the LuxI homologue BpsI or the LuxR homologue BpsR resulted in the loss of C8-HSL and 3-oxo-C8-HSL synthesis, demonstrating that BpsI was responsible for directing the synthesis of these AHLs only and that expression and hence C8-HSL and 3-oxo-C8-HSL production depends on BpsR. In , and mutants, expression was substantially down-regulated. Furthermore, expression in required both BpsR and C8-HSL. -deficient mutants exhibited hypersensitivity to the organic hydroperoxide -butyl hydroperoxide by displaying a reduction in cell viability which was restored by provision of exogenous C8-HSL ( mutant only), by complementation with the genes or by overexpression of . These data indicate that in , QS regulates the response to oxidative stress at least in part via the BpsR/C8-HSL-dependent regulation of DpsA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29226-0
2006-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/12/3651.html?itemId=/content/journal/micro/10.1099/mic.0.29226-0&mimeType=html&fmt=ahah

References

  1. Aguilar C, Friscina A, Devescovi G, Kojic M, Venturi V. 2003; Identification of quorum-sensing-regulated genes of Burkholderia cepacia . J Bacteriol 185:6456–6462 [CrossRef]
    [Google Scholar]
  2. Alexeyev M. F. 1999; The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques 26:824–826
    [Google Scholar]
  3. Almiron M, Link A. J, Furlong D, Kolter R. 1992; A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli . Genes Dev 6:2646–2654 [CrossRef]
    [Google Scholar]
  4. Altman S. A, Zastawny T. H, Randers L, Lin Z, Lumpkin J. A, Remacle J, Dizdaroglu M, Rao G. 1994; tert -Butyl hydroperoxide-mediated DNA base damage in cultured mammalian cells. Mutat Res 306:35–44 [CrossRef]
    [Google Scholar]
  5. Atkinson S, Throup J. P, Stewart G. S. A. B, Williams P. 1999; A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol Microbiol 33:1267–1277
    [Google Scholar]
  6. Cámara M, Williams P, Hardman A. 2002; Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet Infect Dis 2:667–676 [CrossRef]
    [Google Scholar]
  7. Cheng A. C, Currie B. J. 2005; Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 18:383–416 [CrossRef]
    [Google Scholar]
  8. Chhabra S. R, Stead P, Bainton N. J, Salmond G. P. C, Stewart G. S. A. B, Williams P, Bycroft B. W. 1993; Autoregulation of carbapenem biosynthesis in Erwinia carotovora . J Antibiot 46:441–454 [CrossRef]
    [Google Scholar]
  9. Chhabra S. R, Harty C, Hooi D. S, Daykin M, Williams P, Telford G, Pritchard D. I, Bycroft B. W. 2003; Synthetic analogues of the bacterial signal quorum sensing molecule N -(3-oxododecanoyl)-l-homoserine lactone as immune modulators. J Med Chem 46:97–104 [CrossRef]
    [Google Scholar]
  10. De Lorenzo V, Herrero M, Jakubzik U, Timmis K. N. 1990; Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172:6568–6572
    [Google Scholar]
  11. Diggle S. P, Winzer K, Lazdunski A, Williams P, Cámara M. 2002; Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N -acylhomoserine lactone production and virulence gene expression. J Bacteriol 184:2576–2586 [CrossRef]
    [Google Scholar]
  12. Diggle S. P, Winzer K, Chhabra S. R, Worrall K. E, Williams P, Cámara M. 2003; The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl -dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50:29–43 [CrossRef]
    [Google Scholar]
  13. Egan A. M, Gordon D. L. 1996; Burkholderia pseudomallei activates complement and is ingested but not killed by polymorphonuclear leukocytes. Infect Immun 64:4952–4959
    [Google Scholar]
  14. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  15. Hassett D. J, Ma J. F, Elkins J. G. 10 other authors 1999; Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34:1082–1093 [CrossRef]
    [Google Scholar]
  16. Jones A. L, Beveridge T. J, Woods D. E. 1996; Intracellular survival of Burkholderia pseudomallei . Infect Immun 64:782–790
    [Google Scholar]
  17. Lazdunski A. M, Ventre I, Sturgis J. N. 2004; Regulatory circuits and communication in gram-negative bacteria. Nat Rev Microbiol 2:581–592 [CrossRef]
    [Google Scholar]
  18. Lithgow J. K, Wilkinson A, Hardman A, Rodelas B, Wisniewski-Dye F, Williams P, Downie J. A. 2000; The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol Microbiol 37:81–97 [CrossRef]
    [Google Scholar]
  19. Loprasert S, Whangsuk W, Sallabhan R, Mongkolsuk S. 2000; Characterization and mutagenesis of fur gene from Burkholderia pseudomallei . Gene 254:129–137 [CrossRef]
    [Google Scholar]
  20. Loprasert S, Whangsuk W, Sallabhan R, Mongkolsuk S. 2003; Regulation of the katG - dpsA operon and the importance of KatG in survival of Burkholderia pseudomallei exposed to oxidative stress. FEBS Lett 542:17–21 [CrossRef]
    [Google Scholar]
  21. Loprasert S, Whangsuk W, Sallabhan R, Mongkolsuk S. 2004; DpsA protects the human pathogen Burkholderia pseudomallei against organic hydroperoxide. Arch Microbiol 182:96–101 [CrossRef]
    [Google Scholar]
  22. Martinez A, Kolter R. 1997; Protection of DNA during oxidative stress by the non-specfic DNA-binding protein Dps. J Bacteriol 179:5188–5194
    [Google Scholar]
  23. Miller J. H. 1972 Experiments in Molecular Genetics pp.  352–355 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Nathan S. A, Qvist R, Puthucheary S. D. 2005; Kinetic studies of bioactive products nitric oxide and 8-iso-PGF(2alpha) in Burkholderia pseudomallei infected human macrophages, and their role in the intracellular survival of these organisms. FEMS Immunol Med Microbiol 43:177–183 [CrossRef]
    [Google Scholar]
  25. Simon R, Priefer U, Puhler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Bio/Technology 1:784–791 [CrossRef]
    [Google Scholar]
  26. Song Y, Xie C, Ong Y. M, Gan Y. H, Chua K. L. 2005; The BpsIR quorum-sensing system of Burkholderia pseudomallei . J Bacteriol 187:785–790 [CrossRef]
    [Google Scholar]
  27. Stillman T. J, Upadhyay M, Norte V. A. 9 other authors 2005; The crystal structures of Lactococcus lactis MG1363 Dps proteins reveal the presence of an N-terminal helix that is required for DNA binding. Mol Microbiol 57:1101–1112 [CrossRef]
    [Google Scholar]
  28. Swift S, Downie J. A, Whitehead N. A, Barnard A. M, Salmond G. P, Williams P. 2001; Quorum sensing as a population-density-dependent determinant of bacterial physiology. Adv Microb Physiol 45:199–270
    [Google Scholar]
  29. Ulrich R. L, Deshazer D, Brueggemann E. E, Hines H. B, Oyston P. C, Jeddeloh J. A. 2004a; Role of quorum sensing in the pathogenicity of Burkholderia pseudomallei . J Med Microbiol 53:1053–1064 [CrossRef]
    [Google Scholar]
  30. Ulrich R. L, Deshazer D, Hines H. B, Jeddeloh J. A. 2004b; Quorum sensing: a transcriptional regulatory system involved in the pathogenicity of Burkholderia mallei . Infect Immun 72:6589–6596 [CrossRef]
    [Google Scholar]
  31. Ulrich R. L, Hines H. B, Parthasarathy N, Jeddeloh J. A. 2004c; Mutational analysis and biochemical characterization of the Burkholderia thailandensis DW503 quorum-sensing network. J Bacteriol 186:4350–4360 [CrossRef]
    [Google Scholar]
  32. Utaisincharoen P, Tangthawornchaikul N, Kespichayawattana W, Chaisuriya P, Sirisinha S. 2001; Burkholderia pseudomallei interferes with inducible nitric oxide synthase (iNOS) production: a possible mechanism of evading macrophage killing. Microbiol Immunol 45:307–313 [CrossRef]
    [Google Scholar]
  33. Valade E, Thibault F. M, Gauthier Y. P, Palencia M, Popoff M. Y, Vidal D. R. 2004; The PmlI-PmlR quorum-sensing system in Burkholderia pseudomallei plays a key role in virulence and modulates production of the MprA protease. J Bacteriol 186:2288–2294 [CrossRef]
    [Google Scholar]
  34. Winson M. K, Latifi A. 10 other authors Cámara M. 1995; Multiple N -acylhomoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in P. aeruginosa . Proc Natl Acad Sci U S A 92:9427–9431 [CrossRef]
    [Google Scholar]
  35. Withers H, Swift S, Williams P. 2001; Quorum sensing as an integral component of gene regulatory networks. Curr Opin Microbiol 4:186–193 [CrossRef]
    [Google Scholar]
  36. Wuthiekanun V, Smith M. D, Dance D. A, White N. J. 1995; Isolation of Pseudomonas pseudomallei from soil in north-eastern Thailand. Trans R Soc Trop Med Hyg 89:41–43 [CrossRef]
    [Google Scholar]
  37. Yamamoto Y, Poole L. B, Hantgan R. R, Kamio Y. 2002; An iron-binding protein, Dpr, from Streptococcus mutans prevents iron-dependent hydroxyl radical formation in vitro. J Bacteriol 184:2931–2939 [CrossRef]
    [Google Scholar]
  38. Yates E. A, Philipp B, Buckley C. 8 other authors 2002; N -Acyl homoserine lactones undergo lactonysis in a pH- temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa . Infect Immun 70:5635–5646 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29226-0
Loading
/content/journal/micro/10.1099/mic.0.29226-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error