1887

Abstract

Stable tetracycline resistance in is mediated by a family of genomic islands [the (C) islands] that are integrated into the chlamydial chromosome. The (C) islands contain several plasmid-specific genes, the (C) resistance gene and, in most cases, a novel insertion element (IS) encoding two predicted transposases. The hypothesis that IS mediated the integration of the (C) resistance islands into the genome was tested using a plasmid-based transposition system in . Both high- and medium-copy-number plasmids were used as carriers of IS in these experiments. IS integrated into a target plasmid (pOX38) when delivered by either donor plasmid, and integration of the entire donor plasmid was common. IS-mediated integration occurred at many positions within pOX38, with 36 of 38 events adjacent to a 5′-TTCAA-3′ sequence. Deletions in each of the candidate transposase genes within IS demonstrated that only one of the two ORFs was necessary for the observed transposition activity and target specificity. Analysis of progeny from the mating assays also indicated that IS can excise following integration into a target DNA, and, in each tested case, the sequence 5′-AATTCAA-3′ remained at the site of excision. Collectively, these results are consistent with the nucleotide sequence data collected for the (C) islands, and strongly suggest that a transposase within IS is responsible for integration of these genomic islands into the chromosome.

Keyword(s): IS, insertion element
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.29253-0
2007-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/1/71.html?itemId=/content/journal/micro/10.1099/mic.0.29253-0&mimeType=html&fmt=ahah

References

  1. Andersen A. A., Rogers D. G. others 1998; Resistance to tetracycline and sulfadiazine in swine C. trachomatis isolates. In Chlamydial Infections. Proceedings of the Ninth International Symposium on Human Chlamydial Infection pp 313–316 Edited by Stephens R. S. San Francisco, CA: International Chlamydia Symposium;
    [Google Scholar]
  2. Belland R. J., Ouellette S. P., Gieffers J., Byrne G. I. 2004; Chlamydia pneumoniae and atherosclerosis. Cell Microbiol 6:117–127 [CrossRef]
    [Google Scholar]
  3. Bisercic M., Ochman H. 1993; The ancestry of insertion sequences common to Escherichia coli and Salmonella typhimurium . J Bacteriol 175:7863–7868
    [Google Scholar]
  4. Chopra I., Roberts M. 2001; Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260 [CrossRef]
    [Google Scholar]
  5. Dugan J., Rockey D. D., Jones L., Andersen A. A. 2004; Tetracycline resistance in Chlamydia suis mediated by genomic islands inserted into the chlamydial inv -like gene. Antimicrob Agents Chemother 48:3989–3995 [CrossRef]
    [Google Scholar]
  6. Frost L. S., Ippen-Ihler K., Skurray R. A. 1994; Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev 58:162–210
    [Google Scholar]
  7. Greub G., Collyn F., Guy L., Roten C. A. 2004; A genomic island present along the bacterial chromosome of the Parachlamydiaceae UWE25, an obligate amoebal endosymbiont, encodes a potentially functional F-like conjugative DNA transfer system. BMC Microbiol 4:48 [CrossRef]
    [Google Scholar]
  8. Gross J., Gross M. 1969; Genetic analysis of an E. coli strain with a mutation affecting DNA polymerase. Nature 224:1166–1168 [CrossRef]
    [Google Scholar]
  9. Guyer M. S., Reed R. R., Steitz J. A., Low K. B. 1981; Identification of a sex-factor-affinity site in E. coli as gamma delta. Cold Spring Harb Symp Quant Biol 45:135–140 [CrossRef]
    [Google Scholar]
  10. Heffron F., Bedinger P., Champoux J. J., Falkow S. 1977; Deletions affecting the transposition of an antibiotic resistance gene. Proc Natl Acad Sci U S A 74:702–706 [CrossRef]
    [Google Scholar]
  11. Kersulyte D., Akopyants N. S., Clifton S. W., Roe B. A., Berg D. E. 1998; Novel sequence organization and insertion specificity of IS 605 and IS 606 : chimaeric transposable elements of Helicobacter pylori . Gene 223:175–186 [CrossRef]
    [Google Scholar]
  12. Kersulyte D., Mukhopadhyay A. K., Shirai M., Nakazawa T., Berg D. E. 2000; Functional organization and insertion specificity of IS 607 , a chimeric element of Helicobacter pylori . J Bacteriol 182:5300–5308 [CrossRef]
    [Google Scholar]
  13. Kersulyte D., Velapatino B., Dailide G., Mukhopadhyay A. K., Ito Y., Cahuayme L., Parkinson A. J., Gilman R. H., Berg D. E. 2002; Transposable element IS Hp608 of Helicobacter pylori : nonrandom geographic distribution, functional organization, and insertion specificity. J Bacteriol 184:992–1002 [CrossRef]
    [Google Scholar]
  14. Kersulyte D., Kalia A., Zhang M., Lee H. K., Subramaniam D., Kiuduliene L., Chalkauskas H., Berg D. E. 2004; Sequence organization and insertion specificity of the novel chimeric IS Hp609 transposable element of Helicobacter pylori . J Bacteriol 186:7521–7528 [CrossRef]
    [Google Scholar]
  15. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M. 2nd, Peterson K. M. 1994; pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16:800–802
    [Google Scholar]
  16. Lenart J., Andersen A. A., Rockey D. D. 2001; Growth and development of tetracycline-resistant Chlamydia suis . Antimicrob Agents Chemother 45:2198–2203 [CrossRef]
    [Google Scholar]
  17. Murai N., Kamata H., Nagashima Y., Yagisawa H., Hirata H. 1995; A novel insertion sequence (IS)-like element of the thermophilic bacterium PS3 promotes expression of the alanine carrier protein-encoding gene. Gene 163:103–107 [CrossRef]
    [Google Scholar]
  18. Pollmann M., Nordhoff M., Pospischil A., Tedin K., Wieler L. H. 2005; Effects of a probiotic strain of Enterococcus faecium on the rate of natural chlamydia infection in swine. Infect Immun 73:4346–4353 [CrossRef]
    [Google Scholar]
  19. Raoult D. 2001; Antimicrobial activity against obligate intracellular bacteria. Trends Microbiol 9:14 [CrossRef]
    [Google Scholar]
  20. Roberts M. C. 2005; Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245:195–203 [CrossRef]
    [Google Scholar]
  21. Stachel S. E., An G., Flores C., Nester E. W. 1985; A Tn 3 lacZ transposon for the random generation of β -galactosidase gene fusions: application to the analysis of gene expression in Agrobacterium . EMBO J 4:891–898
    [Google Scholar]
  22. Suchland R. J., Geisler W. M., Stamm W. E. 2003; Methodologies and cell lines used for antimicrobial susceptibility testing of Chlamydia spp. Antimicrob Agents Chemother 47:636–642 [CrossRef]
    [Google Scholar]
  23. Ton-Hoang B., Guynet C., Ronning D. R., Cointin-Marty B., Dyda F., Chandler M. 2005; Transposition of IS Hp608 , member of an unusual family of bacterial insertion sequences. EMBO J 24:3325–3338 [CrossRef]
    [Google Scholar]
  24. Wang S. A., Papp J. R., Stamm W. E., Peeling R. W., Martin D. H., Holmes K. K. 2005; Evaluation of antimicrobial resistance and treatment failures for Chlamydia trachomatis : a meeting report. J Infect Dis 191:917–923 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.29253-0
Loading
/content/journal/micro/10.1099/mic.0.29253-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error