1887

Abstract

We have determined the entire nucleotide sequence of a 4·4 kbp fragment of pMOP, a plasmid involved in 4-methylphthalate catabolism in (formerly ) Pc701. Two complete ORFs were identified and termed and encodes a 4-methylphthalate permease which is a member of a superfamily of symport proteins found in both prokaryotes and eukaryotes. Functionality was assigned to MopB by detailed analysis of the predicted amino acid sequence, resulting in the identification of 12 hydrophobic membrane-spanning domains and motifs associated with this class of protein. An assay was developed to demonstrate MopB function in substrate uptake. Of 4-methylphthalate, 4-hydroxyisophthalate, benzoate, -toluate and phthalate, only uptake of 4-methylphthalate and phthalate was demonstrated, suggesting that two carboxyl groups in the position are essential for substrate recognition. The predicted protein MopA showed significant levels of homology to reductase proteins implicated in aromatic and aliphatic catabolism, and contained motifs recognized as binding the ADP and flavin moieties of FAD/NAD. Northern hybridization experiments determined that and are cotranscribed, but expression was only seen in cells grown on 4-methylphthalate and not in cells grown on closely related structural analogues, including phthalate. and may be situated at the 3′-terminus of a cistron about 10 kbp in size. The isolation and characterization of a 4-methylphthalate permease gene may lead to the identification of other permeases involved in bacterial biodegradation processes and possibly the construction of strains with enhanced degradative abilities.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-142-9-2407
1996-09-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/9/mic-142-9-2407.html?itemId=/content/journal/micro/10.1099/00221287-142-9-2407&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Anderson B. N. 1980 4-Methylphtbalic acid utilisation bj soil pseudomonads: biochemistry and genetics of plasmid encodedfunctions. PhD thesis University of Miami USA.
    [Google Scholar]
  3. Autian J. 1973; Toxicity and health threats of phthalate esters: review of the literature. Environ Health Perspect 4:3–26
    [Google Scholar]
  4. Bagdasarian M., Lurz R., Rukert B., Franklin F. C. H., Bagdasarian M. M., Frey J., Timmis K. N. 1981; Specific purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010 derived vectors, and a host vector system for gene cloning in Pseudomonas . Gene 16:237–247
    [Google Scholar]
  5. Brosius J., Holy A. 1984; Regulation of ribosomal RNA promoters with a synthetic lac operator. Proc Natl Acad Sci USA 816929–6933
    [Google Scholar]
  6. Culham D. E., Lasby B., Marangoni A. G., Milner J. L., Steers B. A., van Nues R. W., Wood J. M. 1993; Isolation and sequencing of Escherichia coli gene proP reveals unusual structural features of the osmoregulatory proline/betaine transporter ProP. J Mol Biol 229:268–276
    [Google Scholar]
  7. Ditta G., Schmidhauser T., Yakobson E., Lu P., Liang X. P., Finlay D. R., Guiney D., Helinski D. R. 1985; Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13:149–153
    [Google Scholar]
  8. Dutton J. R., Venables W. A., Saint C. P. 1995; Comamonas acidovorans UCC61 catabolizes o-phthalate via a 4,5-oxygenation pathway that is encoded on a 70 kbp section of plasmid pOPHl bounded by directly repeated sequences. Microbiology 141:1673–1682
    [Google Scholar]
  9. Eaton R. W., Ribbons D. W. 1982; Metabolism of dibutyl- phthalate and phthalate by Micrococcus sp. strain 12B. J Bacteriol 151:48–57
    [Google Scholar]
  10. Eggink G., Engel H., Vriend G., Terpstra P., Witholt B. 1990; Rubredoxin reductase of Pseudomonas oleovoransi structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints. J Mol Biol 212:135–142
    [Google Scholar]
  11. Erickson B. D., Mondello F. J. 1992; Nucleotide sequencing and transcriptional mapping of the genes encoding biphenyl dioxygenase, a multicomponent polychlorinated-biphenyl-degrading enzyme in Pseudomonas strain LB400. J Bacteriol 174:2903–2912
    [Google Scholar]
  12. Figurski D. H., Helinski D. R. 1979; Replication of an origin containing derivative of RK2 dependent on a plasmid function in trans . Proc Natl Acad Sci USA 761648–1652
    [Google Scholar]
  13. Fox B. S., Walsh C. T. 1983; Mercuric reductase: homology to glutathione reductase and lipoamide dehydrogenase. Iodoacetamide alkylation and sequence of the active site peptide. Biochemistry 22:4082–4088
    [Google Scholar]
  14. Greer S., Perham R. N. 1986; Glutathione reductase from Escherichia coli: cloning and sequence analysis of the gene and relationship to other flavoprotein oxidoreductases. Biochemistry 25:2736–2742
    [Google Scholar]
  15. Grinter N. J. 1983; A broad host range cloning vector transposable to various replicons. Gene 21:133–143
    [Google Scholar]
  16. Harayama S., Kok M., Neidle E. L. 1992; Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol 46:565–601
    [Google Scholar]
  17. Inoue C., Sugawara K., Shiratori T., Kusano T., Kitagawa Y. 1989; Nucleotide sequence of the Thiobacillus ferrooxidans chromosomal gene encoding mercuric reductase. Gene 84:47–54
    [Google Scholar]
  18. Ishiguru N., Sato G. 1985; Nucleotide sequence of the gene determining plasmid-mediated citrate utilization. Bacteriol 164:977–982
    [Google Scholar]
  19. Jessen-Marshall A. E., Paul N. J., Brooker R. J. 1995; The conserved motif, GXXX(D/E)(R/K)XG[X](R/K)(R/K), in hydrophilic loop 2/3 of the lactose permease. J Biol Chem 270:16251–16257
    [Google Scholar]
  20. Jung K., Jung H., Colacurcio P., Kaback H. R. 1995; Role of glycine residues in the structure and function of lactose permease, an Escherichia call membrane transport protein. Biochemistry 34:1030–1039
    [Google Scholar]
  21. Kaneshisa M. 1982; Los Alamos sequence analysis package for nucleic acids and proteins. Nucleic Acids Res 10:183–196
    [Google Scholar]
  22. Keith L. H., Telliard W. A. 1979; Priority pollutants; I-A perspective view. Environ Sci Technol 13:416–423
    [Google Scholar]
  23. Koga H., Yamaguchi E., Matsunaga K., Aramaki H., Horiuchi T. 1989; Cloning and nucleotide sequences of NADH-putidairedoxin reductase gene (camA) and putidaredoxin gene (camB) involved in cytochrome P-450cam hydroxylase of Pseudomonas putida . J Biochem 106:831–836
    [Google Scholar]
  24. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic nature of a protein. J Mol Biol 157:105–132
    [Google Scholar]
  25. Laddaga R. A., Chu L., Misra T. K., Silver S. 1987; Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pl258. Proc Natl Acad Sci USA 845106–5110
    [Google Scholar]
  26. Maiden M. C. J., Davis E. O., Baldwin S. A., Moore D. C. M., Henderson F. J. F. 1987; Mammalian and bacterial sugar transport proteins are homologous. Nature 325:641–643
    [Google Scholar]
  27. van der Meer J. R., de Vos W. M., Harayama S., Zehnder A. J. B. 1992; Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56:677–694
    [Google Scholar]
  28. Misra T. K., Brown N. L., Haberstroh L., Schmidt A., Goddette D., Silver S. 1985; Mercuric reductase structural genes from plasmid R100 and transposon Tn 501: functional domains of the enzyme. Gene 34:253–262
    [Google Scholar]
  29. Nakazawa T., Hayashi E. 1977; Phthalate metabolism in Pseudomonas testosteroni: accumulation of 4,5-dihydroxyphthalate by a mutant strain. J Bacteriol 131:42–48
    [Google Scholar]
  30. Nomura Y., Takada N., Oshima Y. 1990; Isolation and identification of phthalate-utilizing bacteria. J Ferment Bioeng 67:297–299
    [Google Scholar]
  31. Peakall D. B. 1975; Phthalate esters; occurrence and biological effects. Residue Rev 54:1–41
    [Google Scholar]
  32. Peterson J. A., Lu J.-Y., Geisselsoder J., Graham-Lorence S., Carmona C., Witney F., Lorence M. C. 1992; Cytochrome P-450terp: isolation and purification of the protein and cloning and sequencing of its operon. J Biol Chem 267:14193–14203
    [Google Scholar]
  33. Pujar B. G., Ribbons D. W. 1985; Phthalate metabolism in Pseudomonas fiuorescens PHK: purification and properties of 4,5-dihydroxyphthalate carboxylase. Appl Environ Microbiol 49:374–376
    [Google Scholar]
  34. van der Rest M. E., Schwarz E., Oesterhelt D., Konings W. N. 1990; DNA sequence of a citrate carrier of Klebsiella pneumoniae . Eur J Biochem 189:401–407
    [Google Scholar]
  35. Roa B. B., Connolly D. M., Winkler M. E. 1989; Overlap between pdxA and ksgA in the complex pdxA-ksgA-apaG-apaH operon of Escherichia coli K-12. J Bacteriol 171:4767–4777
    [Google Scholar]
  36. Russel M., Model P. 1988; Sequence of thioredoxin reductase from Escherichia coli . J Biol Chem 263:9015–9019
    [Google Scholar]
  37. Saint C. P. 1986 Genetics and biochemistry of catabolic plasmids in Pseudomonas. PhD thesis University of Wales UK;
    [Google Scholar]
  38. Saint C. P., Ribbons D. W. 1990; A catabolic plasmid involved in 4-mcthyl-o-phthalate and 4-hydroxy-iso-phthalate degradation in Pseudomonas cepacia . FEMS Microbiol Lett 69:323–328
    [Google Scholar]
  39. Saint C. P., McClure N. C., Venables W. A. 1990; Physical map of the aromatic amine and m-toluate catabolic plasmid pTDNl in Pseudomonas putida: location of a unique meta-cleavage pathway. J Gen Microbiol 136:615–625
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Sasatsu M., Misra T. K., Chu L., Laddaga R., Silver S. 1985; Cloning and DNA sequence of a plasmid determined citrate utilization system in Escherichia coli . J Bacterial 164:983–993
    [Google Scholar]
  42. Sedlmeier R., Altenbuchner J. 1992; Cloning and DNA sequence analysis of the mercury resistance genes of Streptomyces lividans . Mol Gen Genet 236:76–85
    [Google Scholar]
  43. Seol W., Shatkin A. J. 1991; Escherichia coli kgtP encodes an α-ketoglutarate transporter. Proc Natl Acad Sci USA 883802–3806
    [Google Scholar]
  44. Shimamoto T., Izawa H., Daimon H., Ishiguro N., Shinagawa M., Sakano Y., Tsuda M., Tsuchiya T. 1991; Cloning and nucleotide sequence of the gene (citA) encoding a citrate carrier from Salmonella typhimurium . J Biochem 110:22–28
    [Google Scholar]
  45. Shine J., Dalgarno L. 1975; Determinant of cistron specificity in bacterial ribosomes. Nature 254:34–38
    [Google Scholar]
  46. Sibbald P. R., Argos P. 1990; Scrutineer: a computer program which flexibly seeks and describes motifs and profiles in protein sequence databases. Comput Appl Biosci 6:279–288
    [Google Scholar]
  47. Tan H.-M., Tang H.-Y., Joannou C. L., Abdel-Wahab N. H., Mason J. R. 1993; The Pseudomonas putida ML2 plasmid-encoded genes for benzene dioxygenase are unusual in codon usage and low in G + C content. Gene 130:33–39
    [Google Scholar]
  48. Tinoco L, Borer P. N., Dengler B., Levine M. D., Uhlenbeck O.C, Crothers D. M., Gralla J. 1973; Improved estimation of secondary structure in ribonucleic acids. Nature 246:40–41
    [Google Scholar]
  49. Tutic M., Lu X., Schirmer R. H., Werner D. 1990; Cloning and sequencing of mammalian glutathione reductase cDNA. Eur J Biochem 188:523–528
    [Google Scholar]
  50. Wang R. F., Kushner S. R. 1991; Construction of versatile low copy number vectors for cloning, sequencing and gene expression in E. coii . Gene 100:195–199
    [Google Scholar]
  51. Wierenga R. K., De Maeyer C. H., Hol W. G. J. 1985; Interaction of pyrophosphate moieties with α-helices in dinucleotide binding proteins. Biochemistry 24:1346–1357
    [Google Scholar]
  52. Wierenga R. K., Terpstra P., Hol W. G. J. 1986; Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol 187:101–107
    [Google Scholar]
  53. Yanisch-Perron C, Vieira C., Messing J. 1985; Improved Ml3 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  54. Zylstra G. J., Gibson D. T. 1989; Toluene degradation by Pseudomonas putida FI nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli . J Biol Chem 264:14940–14946
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-142-9-2407
Loading
/content/journal/micro/10.1099/00221287-142-9-2407
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error