1887

Abstract

The DNA inversion systems are made up of an invertible DNA segment and a site-specific recombinase gene. Five systems are known in prokaryotes: the H segment and gene (H-), phage Mu G- phage P1 e14 P- and B- systems. In this report a site-specific recombinase () gene of was cloned and sequenced. mediated inversion of five known segments at the same extent in Although one sequence was identified, no invertible region was detected in a cloned fragment. The predicted amino acid sequences of PinD and three ORFs showed high homology to those of Gin and its flanking gene products. An ORF homologous to Mom of Mu conserved a functional activity to modify intracellular plasmid DNA. Southern analysis showed that the cloned fragment contains two homologous regions corresponding to the left and right ends of the Mu genome. Together these results indicated that the gene in is derived from a Mu-like prophage.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-6-2057
1997-06-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/6/mic-143-6-2057.html?itemId=/content/journal/micro/10.1099/00221287-143-6-2057&mimeType=html&fmt=ahah

References

  1. Chang A. C. Y., Cohen S. N. 1978; Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid.. J Bacteriol 134:1141–1156
    [Google Scholar]
  2. Edlin G., Lin L., Kudrna R. 1975; λ lysogens of E. coli reproduce more rapidly than non-lysogens.. Nature 255:735–737
    [Google Scholar]
  3. Edlin G., Lin L., Bitner R. 1977; Reproductive fitness of P1, P2 arid Mu lysogens.. J Virol 21:560–564
    [Google Scholar]
  4. Enomoto M., Oosawa K., Momota H. 1983; Mapping of the pin locus coding for a site-specific recombinatse that causes flngellar-phase variation in Escherichia coli K-12.. J Bacteriol 156:663–668
    [Google Scholar]
  5. Galas D. J., Chandler M. 1989; Bacterial insertion sequences. In Mobile DNA, pp. Edited by D. E. Berg & M. M. Howe. Washington, DC: American Society for Microbiology.. 109–162
    [Google Scholar]
  6. Glasgow A. C., Hughes K. T., Simon M. I. 1989; Bacterial DNA inversion systems. In Mobile DNA, pp. Edited by D. E. Berg & M. M. Howe. Washington, DC: American Society for Microbiology.. 637–659
    [Google Scholar]
  7. Hiestand-Nauer R., Iida S. 1983; Sequence of the site-specific recombinase gene cin and of its substrates serving in the inversion of the C segment of bacteriophage P1.. EMBO J 2:1733–1740
    [Google Scholar]
  8. Howe M. M. 1987; Genetic and physical maps. In Phage Mu, pp. Edited by N. Symonds, A. Toussaint, P. van de Putte & M. M. Howe. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.. 271–273
    [Google Scholar]
  9. Iida S. 1984; Bacteriophage P1 carries two related sets of genes dctermining its host range in the invertible C segment of its genome.. Virology 134:421–434
    [Google Scholar]
  10. Iida S., Meyer J., Kennedy K. E., Arber W. 1982; A site-specific, conservative recombination system carried by bacteriophage P1. Mapping the recombinase gene cin and the cross-over sites cix for the inversion of the C segment.. EMBO J 1:1445–1453
    [Google Scholar]
  11. Johnson R. C., Glasgow A. C., Simon M. I. 1987; Spatial relationship of the Fis binding sites for Hin recombinational enhancer activity.. Nature 329:462–465
    [Google Scholar]
  12. Kahmann R., Hattman S. 1987; Regulation and expression of the mom gene. In Phage Mu, pp. Edited by N. Symonds, A. Toussaint, P. van de Putte & M. M. Howe. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.. 93–109
    [Google Scholar]
  13. Kahmann R., Kamp D. 1987; Sequence of the right end of Mu. In Phage Mu, pp. Edited by N. Symonds, A. Toussaint, P. van de Putte & M. M. Howe. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.. 297–308
    [Google Scholar]
  14. Kahmann R., Rudt F., Koch C., Mertens G. 1985; G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor.. Cell 41:771–780
    [Google Scholar]
  15. Kamp D., Kahmann R. 1981; The relationship of two invertible segments in bacteriophage Mu and Salmonella typhimurium DNA.. Mol Gen Genet 184:564–566
    [Google Scholar]
  16. Koch C., Mertens G., Rudt F., Kahmann R., Kanaar R., Plasterk R., van de Putte P., Sandulache R., Kamp D. 1987; The invertible G segment. In Phage Mu, pp. Edited by A. T. N. Symonds, A. Toussaint, P. van de Putte & M. M. Howe. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.. 75–91
    [Google Scholar]
  17. Kostrzewa M., Zetsche K. 1992; Large ATP synthase operon of the red alga Antithamnion sp. resembles the corresponding operon in cyanobacteria.. J Mol Biol 227:961–970
    [Google Scholar]
  18. Kostrzewa M., Zetsche K. 1993; Organization of plastidencoded ATPase genes and flanking regions including homologues of infB and tsf in the thermophilic red alga Galdieria sulphuraria.. Plant Mol Biol 23:67–76
    [Google Scholar]
  19. Kutsukake K., Iino T. 1980; A trans-acting factor mediates inversion of a specific DNA segment in flagellar phase variation of Salmonella.. Nature 284:479–481
    [Google Scholar]
  20. Maniatis T., Fritsch E. F., Sambrook J. 1982; Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory..
    [Google Scholar]
  21. Matsutani S., Ohtsubo H., Maeda Y., Ohtsubo E. 1987; Isolation and characterization of IS elements repeated in the bacterial chromosome.. J Mol Biol 196:445–455
    [Google Scholar]
  22. Momota H., Enomoto M. 1986; Rates of flagellar- and P1 infective-phase variation by three site-specific recombinase genes in every possible combination.. Jpn J Genet 61:419–436
    [Google Scholar]
  23. Ochman H., Wilson A. C. 1987; Evolutionary history of enteric bacteria. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. Edited by F. C. Neidhardt, J. L. Ingraham, K. Brooks Low, B. Magasanik, M. Schaechter & H. E. Umbarger. Washington, DC: American Society for Microbiology.. 1649–1654
    [Google Scholar]
  24. Okazaki N., Matsuo S., Saito K., Tominaga A., Enomoto M. 1993; Conversion of the Salmonella phase1 flagellin gene fliC to the phase 2 gene fljB on the Escherichia coli K-12 chromosome.. J Bacteriol 175:758–766
    [Google Scholar]
  25. Plasterk R. H. A., van de Putte P. 1985; The invertible P-DNA segment in the chromosome of Escherichia coli.. EMBO J 4:237–242
    [Google Scholar]
  26. Plasterk R. H. A., Brinkman A., van de Putte P. 1983; DNA inversions in the chromosome of Escherichia coli and in bacteriophage Mu: relationship to other site-specific recombination systems.. Proc Natl Acad Sci USA 80:5355–5358
    [Google Scholar]
  27. van de Putte P., Plasterk R., Kuijpers A. 1984; A Mu gin complementing function and an invertible DNA region in Escherichia coli K-12 are situated on the genetic element e14.. J Bacteriol 158:517–522
    [Google Scholar]
  28. Rozsa F. W., Viollier P., Fussenegger M., Hiestand-Nauer R., Arber W. 1995; Cin-mediated recombination at secondary crossover sites on the Escherichia coli chromosome.. J Bacteriol 177:1159–1168
    [Google Scholar]
  29. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors.. Proc Natl Acad Sci USA 74:5463–5467
    [Google Scholar]
  30. Scott J. R. 1968; Genetic studies on bacteriophage P1.. Virology 36:564–574
    [Google Scholar]
  31. Silverman M., Zieg J., Hilmen M., Simon M. 1979; Phase variation in Salmonella: genetic analysis of a recombinational switch.. Proc Natl Acad Sci USA 76:391–395
    [Google Scholar]
  32. Szekely E., Simon M. 1981; Homology between the invertible deoxyrihonucleic acid sequence that controls flagellar-phase variation in Salmonella sp. and deoxyribonucleic acid sequences in other organisms.. J Bacteriol 148:829–836
    [Google Scholar]
  33. Tominaga A., Nakamura K., Enomoto M. 1986; Isolation of P1cinC(+) and P1cinC(−) mutants and detection of their polypeptides involved in host specificity.. Jpn J Genet 61:1–13
    [Google Scholar]
  34. Tominaga A., Ikemizu S., Enomoto M. 1991; Site-specific recombinase genes in three Shigella subgroups and nucleotide sequences of a pinB gene and an invertible B segment from Shigella boydii.. J Bacteriol 173:4079–4087
    [Google Scholar]
  35. Toussaint A. 1976; The DNA modification function of teniperate phage Mu-1.. Virology 70:17–27
    [Google Scholar]
  36. Vieira J., Messing J. 1987; Production of single-stranded plasmid DNA.. Methods Enzymol 153:3–11
    [Google Scholar]
  37. Zieg J., Simon M. 1980; Analysis of the nuclotide sequence of an invertible controlling element.. Proc Natl Acad Sci USA 77:4196–4200
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-6-2057
Loading
/content/journal/micro/10.1099/00221287-143-6-2057
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error