1887

Abstract

Summary: A 32 kb nucleotide sequence in the region of the lincomycin-resistance gene, located from 22° to 25° on the chromosome, was determined. Among 32 putative ORFs identified, four [ for lipase, and (renamed )] have already been reported, although the functions of NatA, NatB and YccK remain to be characterized. Six putative products were found to exhibit significant similarity to known proteins in the databases, namely L-asparaginase precursor, protein aspartate phosphatase, x-glucosidase, two tellurite-resistance proteins and a hypothetical protein from B. subtilis. The region of the tellurite-resistance gene, consisting of seven ORFs, seems to correspond to an operon. The products of 14 ORFs exhibited considerable or limited similarity to known proteins. The sequenced region seems to be rich in membrane proteins, since at least 16 gene products appeared to contain membrane-spanning domains. The site of the mutation (two nucleotide replacements) was mapped and identified by sequencing. This site is located between a putative promoter and the SD sequence of [a putative repressor of the operon, which consists of and ]. LmrB is a homologue of proteins involved in drug-export systems and seems likely to be the protein responsible for resistance to lincomycin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-8-2775
1997-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/8/mic-143-8-2775.html?itemId=/content/journal/micro/10.1099/00221287-143-8-2775&mimeType=html&fmt=ahah

References

  1. Ahmed M., Lyass L., Markham P. N., Taylor S. S., Vazquez-Laslop N., Neyfakh A. A. 1995; Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated. J Bacteriol 177:3904–3910
    [Google Scholar]
  2. Awade A., Cleuziat P., Gonzales T., Robert-Baudouy J. 1992; Characterization of the pcp gene encoding the pyrrolidone carboxy-peptidase of Bacillus subtilis. . FEBS Lett 305:67–73
    [Google Scholar]
  3. Bindra P. S., Knowles R., Buckley K. M. 1993; Conservation of the amino acid sequence of SV2, a transmembrane transporter in synaptic vesicles and endocrine cells. Gene 137:299–302
    [Google Scholar]
  4. Brunskill E. W., Bayles K. W. 1996; Identification and molecular characterization of a putative regulatory locus that affects autolysis in Staphylococcus aureus. . J Bacteriol 178:611–618
    [Google Scholar]
  5. Chou P. Y., Fasman G. D. 1978; Prediction of the secondary structure of proteins from their amino acid sequences. Adv Enzymol 47:45–148
    [Google Scholar]
  6. Dartois V., Baulard A., Schanck K., Colson C. 1992; Cloning, nucleotide sequence and expression in Escherichia coli of a lipase gene from Bacillus subtilis 168. Biochim Biophys Acta 1131:253–260
    [Google Scholar]
  7. Fleischmann R. D., Adams M. D., White O. 37 other authors 1995; Whole-genome random sequencing of Haemophilus influenzae Rd. Science 269:496–512
    [Google Scholar]
  8. Goldthwaite C., Dubnau D., Smith I. 1970; Genetic mapping of antibiotic resistance in markers Bacillus subtilis. . Proc Natl Acad Sci USA 65:96–103
    [Google Scholar]
  9. Guilfoile P. G., Hutchinson C. R. 1992a; Sequence and transcriptional analysis of the Streptomyces glaucescens tcmAR tetracenomycin C resistance and repressor gene loci. J Bacteriol 174:3651–3658
    [Google Scholar]
  10. Guilfoile P. G., Hutchinson C. R. 1992b; The Streptomyces glaucescens TcmR protein represses transcription of the divergently oriented tcmR and tcmA genes by binding to an intergenic operator region. J Bacteriol 174:3659–3666
    [Google Scholar]
  11. Harford N., Sueoka N. 1970; Chromosomal location of antibiotic resistance markers in Bacillus subtilis. . J Mol Biol 51:267–286
    [Google Scholar]
  12. Kempf B., Bremer E. 1995; OpuA, an osmotically regulated binding protein-dependent transport system for the osmo-protectant glycine betaine in Bacillus subtilis. . J Biol Chem 270:16701–16713
    [Google Scholar]
  13. Lampel K. A., Uratani B., Chaudhry G. R., Ramaley R. F., Rudikoff S. 1986; Characterization of the developmentally regulated Bacillus subtilis glucose dehydrogenase gene. J Bacteriol 166:238–243
    [Google Scholar]
  14. Loessner M. J., Wendlinger G., Scherer S. 1995; Heterogeneous endolysins in Listeria monocytogenes bacteriophages. A new class of enzyme and evidence for conserved holin genes within the siphoviral lysis cassettes. Mol Microbiol 16:1231–1241
    [Google Scholar]
  15. Lomovskaya O., Lewis K. 1992; emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci USA 89:8938–8942
    [Google Scholar]
  16. Minton N. P., Bullman H. M. S., Scawen M. D., Atkinson T., Gilbert H. J. 1986; Nucleotide sequence of the Erwinia chrysanthemi NCPPB1066 l-asparaginase gene. Gene 46:25–35
    [Google Scholar]
  17. Mueller J. P., Bukusoglu G., Sonenshein A. L. 1992; Transcriptional regulation of Bacillus subtilis glucose starvation-inducible genes: control of gsiA by the ComP-ComA signal transduction system. J Bacteriol 174:4361–4373
    [Google Scholar]
  18. Nakao M., Nakayama T., Kakudo A., Inohara M., Harada M., Omura F., Shibano Y. 1994; Structure and expression of a gene coding thermostable α-glucosidase with a broad substrate specificity from Bacillus sp. SAM1606. Eur J Biochem 220:293–300
    [Google Scholar]
  19. Neyfakh A. A., Bidnenko V. E., Chen L. B. 1991; Efflux-mediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system. Proc Natl Acad Sci USA 88:4781–4785
    [Google Scholar]
  20. Nomura S., Yamane, Κ., Sasaki T., Yamasaki M., Tamura G., Maruo B. 1978; Tunicamycin-resistant mutants and chromosomal locations of mutational sites in Bacillus subtilis. . J Bacteriol 136:818–821
    [Google Scholar]
  21. Ogasawara N., Nakai S., Yoshikawa H. 1994; Systematic sequencing of the 180 kilobase region of the Bacillus subtilis chromosome containing the replication origin. DNA Res 1:1–14
    [Google Scholar]
  22. Ogawa K., Akagawa E., Nakamura K., Yamane K. 1995; Determination of a 21548 bp nucleotide sequence around the 24° region of the Bacillus subtilis chromosome. Microbiology 141:269–275
    [Google Scholar]
  23. Perego M., Glaser P., Hoch J. A. 1996; Aspartyl-phosphate phosphatases deactivate the response regulator components of the sporulation signal transduction system in Bacillus subtilis. . Mol Microbiol 19:1151–1157
    [Google Scholar]
  24. Peschke U., Schmidt H., Zhang H.-Z., Piepersberg W. 1995; Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78-11. Mol Microbiol 16:1137–1156
    [Google Scholar]
  25. Postle, Κ., Nguyen T. T., Bertrand K. P. 1984; Nucleotide sequence of the repressor gene of the TN10 tetracycline resistance determinant. Nucleic Acids Res 12:4849–4863
    [Google Scholar]
  26. Rouch D. A., Cram D. S., Diberardino D., Littlejohn T. G., Skurray R. A. 1990; Efflux-mediated antiseptic resistance gene qacA from Staphylococcus aureus: common ancestry with tetracycline- and sugar- transport proteins. Mol Microbiol 4:2051–2062
    [Google Scholar]
  27. Saiki R. K., Scharf S., Faloona F., Mullis, Κ. B., Horn G. T., Erlich H. A., Arnheim N. 1985; Enzymic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354
    [Google Scholar]
  28. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629
    [Google Scholar]
  29. Sampson J. S., O'Connor S. P., Stinson A. R., Tharpe J. A., Russell H. 1994; Cloning and nucleotide sequence analysis of psaA, the Streptococcus pneumoniae gene encoding a 37-kilodalton protein homologous to previously reported Streptococcus sp. adhesins. Infect Immun 62:319–324
    [Google Scholar]
  30. Skinner R., Cundliffe E., Schmidt F. J. 1983; Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J Biol Chem 258:12702–12706
    [Google Scholar]
  31. Tercero J. A., Lacalle R. A., Jimenez A. 1993; The pur8 gene from the pur cluster of Streptomyces alboniger encodes a highly hydrophobic polypeptide which confers resistance to puromycin. Eur J Biochem 218:963–971
    [Google Scholar]
  32. Triglia T., Peterson M. G., Kemp D. J. 1988; A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res 16:8186
    [Google Scholar]
  33. Watanabe K., Chishiro, Κ., Kitamura K., Suzuki Y. 1991; Proline residues responsible for thermostability occur with high frequency in the loop regions of an extremely thermostable oligo-1,6-glucosidase from Bacillus thermoglucosidasius KP1006. J Biol Chem 266:24287–24294
    [Google Scholar]
  34. Whelan K. F., Colleran E., Taylor D. E. 1995; Phage inhibition, colicin resistance, and tellurite resistance are encoded by a single cluster of genes on the IncHI2 plasmid R478. J Bacteriol 177:5016–5027
    [Google Scholar]
  35. Wilson G. A., Bott K. F. 1968; Nutritional factors influencing the development of competence in the Bacillus subtilis transformation system. J Bacteriol 95:1439–1449
    [Google Scholar]
  36. Yamane K., Kumano M., Kurita K. 1996; The 25°–36° region of the Bacillus subtilis chromosome: determination of the sequence of a 146 kb segment and identification of 113 genes. Microbiology 142:3047–3056
    [Google Scholar]
  37. Zhang H.-Z., Schmidt H., Piepersberg W. 1992; Molecular cloning and characterization of two lincomycin-resistance genes, lmrA and lmrB, from Streptomyces lincolnensis 78-11. Mol Microbiol 6:2147–2157
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-8-2775
Loading
/content/journal/micro/10.1099/00221287-143-8-2775
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error