1887

Abstract

The site for bud selection and germ tube emission in two yeasts, and , was analysed. Both dimorphic organisms display different patterns of budding, which also differ from those described for . , which is diploid and (until now) lacks a known sexual cycle, buds in an axial budding pattern. During the yeast–hypha transition induced by pH, serum, -acetylglucosamine (GlcNAc) or temperature, germ tube emergence occurs at approximately 50% in a polar manner, while the other 50% of cells show non-polar germ tube emission. , in which most of the natural isolates are haploid and which has a well characterized sexual cycle, buds with a polar budding pattern independently of the degree of ploidy. Germ tube emission during the yeast–hypha transition in both haploid and diploid cells generally occurs at the pole distal from the division site (bipolar). The addition of hydroxyurea (HU), an inhibitor of DNA synthesis, also produces different effects. In its presence, and therefore in the absence of DNA synthesis, the yeast–hypha transition is completely abolished in . By contrast, in germ tube emission in the presence of HU is similar to that observed in control cultures for at least 90 min under induction conditions. These results demonstrate that, rather than a single developmental model, several models of development should be invoked to account for the processes involved in the morphological switch in yeasts (the yeast–hypha transition).

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-10-2727
1999-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/10/1452727a.html?itemId=/content/journal/micro/10.1099/00221287-145-10-2727&mimeType=html&fmt=ahah

References

  1. Amon, A. (1996). Mother and daughter are doing fine: asymmetric cell division in yeast. Cell 84, 651-654.[CrossRef] [Google Scholar]
  2. Barns, S. M., Lane, D. J., Sogin, M. L., Bibeau, C. & Weisburg, W. G. (1991). Evolutionary relationships among pathogenic Candida species and relatives. J Bacteriol 173, 2250-2255. [Google Scholar]
  3. Barth, G. & Gaillardin, C. (1996).Yarrowia lipolytica. In Nonconventional Yeasts in Biotechnology, pp. 313-388. Edited by K. Wolf. Berlin: Springer.
  4. Braun, B. R. & Johnson, A. D. (1997). Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105-109.[CrossRef] [Google Scholar]
  5. Chaffin, W. L. (1984). Site selection for bud and germ tube emergence in Candida albicans. J Gen Microbiol 130, 431-440. [Google Scholar]
  6. Chant, J. & Pringle, J. R. (1995). Patterns of bud site selection in the yeast Saccharomyces cerevisiae. J Cell Biol 129, 751-765.[CrossRef] [Google Scholar]
  7. Chant, J., Mischke, M., Mitchell, E., Herskowitz, I. & Pringle, J. R. (1995). Role of Bud3p in producing the axial budding pattern of yeast. J Cell Biol 129, 767-778.[CrossRef] [Google Scholar]
  8. Chenevert, J., Valtz, N. & Herskowitz, I. (1994). Identification of genes required for normal pheromone-induced cell polarization in Saccharomyces cerevisiae. Genetics 136, 1287-1297. [Google Scholar]
  9. Edwards, E. J. J. (1990).Candida species. In Principles and Practice of Infectious Diseases, pp. 1943-1958. Edited by G. L. Mandell, R. G. Douglas & J. E. Bennet. New York: Churchill Livingstone.
  10. Fonzi, W. A. & Irwin, M. Y. (1993). Isogenic strain construction and gene mapping in Candida albicans. Genetics 143, 712-728. [Google Scholar]
  11. Gimeno, C. J., Ljungdahl, P. O., Styles, C. A. & Fink, G. R. (1992). Unipolar cell divisions in the yeast Saccharomyces cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68, 1077-1090.[CrossRef] [Google Scholar]
  12. Gimeno, C. J., Ljungdahl, P. O., Styles, C. A. & Fink, G. R. (1993). Characterization of Saccharomyces cerevisiae pseudohyphal growth. In Dimorphic Fungi in Biology and Medicine, pp. 83-103. Edited by H. Vanden Bossche, C. Odds & D. Kerridge. New York: Plenum.
  13. Gönczy, P. & Hyman, A. A. (1996). Cortical domains and the mechanisms of asymmetric cell division. Trends Cell Biol 6, 382-387.[CrossRef] [Google Scholar]
  14. Gow, N. R. (1994). Yeast–hyphal dimorphism. In The Growing Fungus, pp. 405-422. Edited by N. A. R. Gow & G. M. Gadd. London: Chapman & Hall.
  15. Hartwell, L. H. (1976). Sequential function of gene products relative to DNA synthesis in the yeast cell cycle. J Mol Biol 104, 308-817. [Google Scholar]
  16. Herskowitz, I. (1995). MAP kinase pathways in yeast: for mating and more. Cell 80, 187-197.[CrossRef] [Google Scholar]
  17. Hunter, T. & Plowman, G. D. (1997). The protein kinases of budding yeast: six score and more. Trends Biochem Sci 22, 18-22. [Google Scholar]
  18. Jackson, C. L. & Hartwell, L. H. (1990a). Courtship in S. cerevisiae: both cell types choose mating partners by responding to the strongest pheromone signal. Cell 63, 1039-1051.[CrossRef] [Google Scholar]
  19. Jackson, C. L. & Hartwell, L. H. (1990b). Courtship in Saccharomyces cerevisiae: an early cell–cell interaction during mating. Mol Cell Biol 10, 2203-2213. [Google Scholar]
  20. Johnson, A. D. (1995). Molecular mechanisms of cell-type determination in budding yeast. Curr Opin Genet Dev 5, 552-558.[CrossRef] [Google Scholar]
  21. Kron, S. J. (1997). Filamentous growth in budding yeast. Trends Microbiol 5, 450-454.[CrossRef] [Google Scholar]
  22. Kron, S. J. & Gow, N. A. (1995). Budding yeast morphogenesis: signalling, cytoskeleton and cell cycle. Curr Opin Cell Biol 7, 845-855.[CrossRef] [Google Scholar]
  23. Kurischko, C., Fournier, P., Chasles, M., Weber, H. & Gaillardin, C. (1992). Cloning of the mating type gene MatA of the yeast Yarrowia lipolytica. Mol Gen Genet 232, 423-426. [Google Scholar]
  24. Kurischko, C., Schilhabel, M. B., Kunze, I. & Franzl, E. (1999). The MatA locus of the dimorphic yeast Yarrowia lipolytica consists of two divergently oriented genes. Mol Gen Genet (in press).
  25. Leberer, E., Harcus, D., Broadbent, I. D. & 7 other authors (1996). Signal transduction through homologs of the ste20p and ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc Natl Acad Sci USA 93, 13217–13222.[CrossRef] [Google Scholar]
  26. Lee, K. L., Buckley, H. L. & Campbell, C. (1975). An amino acid liquid synthetic medium for development of mycelial and yeast forms of Candida albicans. Sabouraudia 13, 148-153.[CrossRef] [Google Scholar]
  27. Lew, D. J. & Reed, S. I. (1995). A cell cycle checkpoint monitors cell morphogenesis in budding yeast. J Cell Biol 129, 739-749.[CrossRef] [Google Scholar]
  28. Lew, D. J., Marini, N. J. & Reed, S. I. (1992). Different G1 cyclins control the timing of cell cycle commitment in mother and daughter cells of the budding yeast Saccharomyces cerevisiae. Cell 69, 317-327.[CrossRef] [Google Scholar]
  29. Lo, H.-J., Köhler, J. R., DiDomenico, B., Loebemberg, D., Cacciapuoti, A. & Fink, G. R. (1997). Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939-949.[CrossRef] [Google Scholar]
  30. Madden, K., Costigan, C. & Snyder, M. (1992). Cell polarity and morphogenesis in Saccharomyces cerevisiae. Trends Cell Biol 2, 22-29.[CrossRef] [Google Scholar]
  31. Madhani, H. D. & Fink, G. R. (1998a). The riddle of MAP kinase signalling specificity. Trends Genet 14, 151-155.[CrossRef] [Google Scholar]
  32. Madhani, H. D. & Fink, G. R. (1998b). The control of filamentous differentiation and virulence in fungi. Trends Cell Biol 8, 348-353.[CrossRef] [Google Scholar]
  33. Martı́nez, J. P., López-Ribot, J. L., Gil, M. L., Sentandreu, R. & Ruiz-Herrera, J. R. (1990). Inhibition of the dimorphic transition of Candida albicans by the ornithine decarboxylase inhibitor 1,4-diaminobutanone: alterations in the glycoprotein composition of the cell wall. J Gen Microbiol 136, 1937-1943.[CrossRef] [Google Scholar]
  34. Mösch, H.-U. & Fink, G. R. (1997). Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics 145, 671-684. [Google Scholar]
  35. Odds, F. C. (1988).Candida and Candidosis. London: Baillière Tindall.
  36. Ogrydziak, D. M., Bassel, J., Contopoulo, R. & Mortimer, R. K. (1978). Development of genetic techniques and the genetic map of the yeast Saccharomycopsis lipolytica. Mol Gen Genet 163, 229-239.[CrossRef] [Google Scholar]
  37. Roberts, R. L. & Fink, G. R. (1994). Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two development programs in the same cell type: mating and invasive growth. Genes Dev 8, 2974-2985.[CrossRef] [Google Scholar]
  38. Rodrı́guez, C. & Domı́nguez, A. (1984). The growth characteristics of Saccharomycopsis lipolytica: morphology and induction of mycelial formation. Can J Microbiol 30, 605-612.[CrossRef] [Google Scholar]
  39. Rodrı́guez, C., López, M. C. & Domı́nguez, A. (1990). Macromolecular synthesis during the yeast–mycelium transition in Yarrowia lipolytica. Exp Mycol 14, 310-321.[CrossRef] [Google Scholar]
  40. Roemer, T., Vallier, L. G. & Snyder, M. (1996). Selection of polarized growth sites in yeast. Trends Cell Biol 6, 434-441.[CrossRef] [Google Scholar]
  41. Saporito-Irwin, S. M., Birse, C. E., Shypherd, P. S. & Fonzi, W. A. (1995).PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis. Mol Cell Biol 15, 601-613. [Google Scholar]
  42. Scherr, G. H. & Weaver, R. H. (1953). The dimorphism phenomenon in yeasts. Bacteriol Rev 17, 51-92. [Google Scholar]
  43. Schultz, J., Ferguson, B. & Sprague, G. F.Jr (1995). Signal transduction and growth control in yeast. Curr Opin Genet Dev 5, 31-37.[CrossRef] [Google Scholar]
  44. Segall, J. E. (1993). Polarization of yeast cells in spatial gradients of α-mating factor. Proc Natl Acad Sci USA 90, 8332-8336.[CrossRef] [Google Scholar]
  45. Shepherd, M. G., Yin, Ch. Y., Ram, S. P. & Sullivan, P. A. (1980). Germ tube induction in Candida albicans. Can J Microbiol 26, 21-26.[CrossRef] [Google Scholar]
  46. Sherman, S., Fink, G. & Hicks, J. B. (1986).Methods in Yeast Genetics: aLaboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  47. Slater, M. L. (1973). Effect of reversible inhibition of deoxyribonucleic acid synthesis on the yeast cell cycle. J Bacteriol 113, 263-270. [Google Scholar]
  48. Stoldt, V. R., Sonneborn, A., Leuker, C. E. & Ernst, J. (1997). Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16, 1982-1991.[CrossRef] [Google Scholar]
  49. Torres-Guzmán, J. C. & Domı́nguez, A. (1997).HOY1, a homeo gene required for hyphal formation in Yarrowia lipolytica. Mol Cell Biol 17, 6283-6293. [Google Scholar]
  50. Vanden Bossche, H., Odds, F. C. & Kerridge, D. (1993).Dimorphic Fungi in Biology and Medicine. New York: Plenum.
  51. Yaar, L., Mevarech, M. & Koltin, Y. (1997). A Candida albicansRAS-related gene (CaRSR1) is involved in budding, cell morphogenesis and hypha development. Microbiology 143, 3033-3044.[CrossRef] [Google Scholar]
  52. Yang, S., Ayscough, K. R. & Drubin, D. G. (1997). A role for the actin cytoskeleton of Saccharomyces cerevisiae in bipolar bud site selection. J Cell Biol 136, 111-123.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-10-2727
Loading
/content/journal/micro/10.1099/00221287-145-10-2727
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error