1887

Abstract

The mean critical collapse pressure ( ) of gas vesicles in 81 strains of the cyanobacterium from Lake Zürich, Switzerland, was bimodally distributed between a minimum of 086 MPa and a maximum of 117 MPa. Measurements were made of the cylinder diameter () of gas vesicles isolated from seven of the strains. The mean diameter, which varied from 48 to 61 nm, was inversely related to , in keeping with the theory of strength of thin-walled rigid cylinders. These measurements extended the range of –width relationship of gas vesicles, which can be described by the expression =461(/nm) MPa. was correlated with gas vesicle genotype (see the accompanying paper by S. J. Beard, B. A. Handley, P. K. Hayes & A. E. Walsby, 145, 2757–2768): of the 81 strains investigated, all those with the gas vesicle genotype GV2 produced gas vesicles with a mean of less than 10 MPa, whereas those of GV3 had a mean of greater than 10 MPa. It is suggested that gas vesicles of the GV3 strains, which are narrower and stronger than any previously recorded in freshwater cyanobacteria, have evolved to withstand the high hydrostatic pressures during deep winter mixing in Lake Zürich.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-10-2769
1999-10-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/10/1452769a.html?itemId=/content/journal/micro/10.1099/00221287-145-10-2769&mimeType=html&fmt=ahah

References

  1. Albertano, P., Di Somma, D., Leonardi, D., Canini, A. & Grilli Caola, M. (1996). Cell structure of planktic cyanobacteria in the Baltic Sea. Arch Hydrobiol Suppl, Algol Stud 83, 29-54. [Google Scholar]
  2. Allen, H. G. & Bulson, P. S. (1980).Background to Buckling. London: McGraw-Hill.
  3. Anagnostides, K. & Komárek, J. (1988). Modern approaches to the classification system of cyanophytes. 3 – Oscillatoriales. Arch Hydrobiol 80, 327-472. [Google Scholar]
  4. Beard, S. J., Handley, B. A., Hayes, P. K. & Walsby, A. E. (1999). The diversity of gas vesicle genes in Planktothrix rubescens from Lake Zürich. Microbiology 145, 2757-2768. [Google Scholar]
  5. Feuillade, J. (1994). The cyanobacterium (blue-green alga) Oscillatoria rubescens D. C. Arch Hydrobiol 42, 77-93. [Google Scholar]
  6. Hayes, P. K., & Walsby, A. E. (1984). An investigation into the recycling of gas vesicle protein derived from collapsed gas vesicles. J Gen Microbiol 130, 1591–1596. [Google Scholar]
  7. Hayes, P. K. & Walsby, A. E. (1986). The inverse correlation between width and strength of gas vesicles in cyanobacteria. Br Phycol J 21, 191-197.[CrossRef] [Google Scholar]
  8. Kinsman, R. (1995).Molecular and structural studies of the gas vesicles of bloom-forming cyanobacteria. PhD thesis, University of Bristol.
  9. Kinsman, R. & Hayes, P. K. (1997). Genes encoding proteins homologous to halobacterial Gvps N, J, K, F, & L are located downstream of gvpC in the cyanobacterium Anabaena flos-aquae. DNA Seq 7, 97-106. [Google Scholar]
  10. Kinsman, R., Walsby, A. E. & Hayes, P. K. (1995). GvpCs with reduced numbers of repeating sequence elements bind to and strengthen cyanobacterial gas vesicles. Mol Microbiol 17, 147-154.[CrossRef] [Google Scholar]
  11. Komrek, J., Hbel, M. & Hbel, H. (1993). The Nodularia studies 2. Taxonomy. Arch Hydrobiol Suppl 96, Algol Stud 68, 1–25. [Google Scholar]
  12. Oliver, R. L. (1994). Floating and sinking in gas-vacuolate cyanobacteria. J Phycol 30, 161-173.[CrossRef] [Google Scholar]
  13. Thomas, E. A. & Märki, E. (1949). Der heutige Zustand des Zürichsees. Mitt Int Ver Limnol 10, 476-488. [Google Scholar]
  14. Utkilen, H. C., Skulberg, O. M. & Walsby, A. E. (1985). Buoyancy regulation and chromatic adaptation in planktonic Oscillatoria species: alternative strategies for optimising light absorption in stratified lakes. Arch Hydrobiol 104, 407-417. [Google Scholar]
  15. Walsby, A. E. (1973). A portable apparatus for measuring relative gas vacuolation, the strength of gas vacuoles, and turgor pressure in planktonic blue-green algae and bacteria. Limnol Oceanogr 18, 653-658.[CrossRef] [Google Scholar]
  16. Walsby, A. E. (1982). The elastic compressibility of gas vesicles. Proc R Soc Lond Ser B 216, 355-368.[CrossRef] [Google Scholar]
  17. Walsby, A. E. (1991). The mechanical properties of the Microcystis gas vesicle. J Gen Microbiol 137, 2401-2408.[CrossRef] [Google Scholar]
  18. Walsby, A. E. (1994). Gas vesicles. Microbiol Rev 58, 94-144. [Google Scholar]
  19. Walsby, A. E. & Bleything, A. (1988). The dimensions of cyanobacterial gas vesicles in relation to their efficiency in providing buoyancy and withstanding pressure. J Gen Microbiol 134, 2635-2645. [Google Scholar]
  20. Walsby, A. E. & Klemer, A. R. (1974). The role of gas vacuoles in the microstratification of a population of Oscillatoria agardhii var. isothrix in Deming Lake, Minnesota. Arch Hydrobiol 74, 375-392. [Google Scholar]
  21. Walsby, A. E., Utkilen, H. C. & Johnsen, I. J. (1983). Buoyancy changes of a red coloured Oscillatoria agardhii in Lake Gjersjøen, Norway. Arch Hydrobiol 97, 18-38. [Google Scholar]
  22. Walsby, A. E., Hayes, P. K. & Boje, R. (1995). The gas vesicles, buoyancy and vertical distribution of cyanobacteria in the Baltic Sea. Eur J Phycol 30, 87-94.[CrossRef] [Google Scholar]
  23. Walsby, A. E., Avery, A. & Schanz, F. (1998). The critical pressures of gas vesicles in Planktothrix rubescens in relation to the depth of winter mixing in Lake Zürich, Switzerland. J Plankton Res 20, 1357-1375.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-10-2769
Loading
/content/journal/micro/10.1099/00221287-145-10-2769
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error