1887

Abstract

The enhanced green fluorescent protein (EGFP) gene is a modified version of the green fluorescent protein gene of the jellyfish with a codon usage that corresponds well to that found in many GC-rich streptomycete genes. Here the use of EGFP as a reporter for the analysis of spatially and temporally regulated gene expression in A3(2) is demonstrated. The EGFP gene was inserted into plasmids that can replicate in , greatly facilitating the construction of EGFP gene fusions. The plasmids can be transferred readily to by conjugation, whereupon two of them (pIJ8630 and pIJ8660) integrate at the chromosomal attachment site for the temperate phage ϕC31. These vectors were used to analyse the spatial and temporal expression of , which encodes a σ factor required for spore maturation, and of , a pathway-specific regulatory gene for the production of undecylprodigiosin, one of the four antibiotics made by . While transcription of appeared to be confined to developing and mature spore chains, transcription of occurred only in ageing substrate mycelium. A further plasmid derivative (pIJ8668) was made that lacks the ϕC31 attachment site, allowing the EGFP gene to be fused transcriptionally to genes of interest at their native chromosomal locations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-145-9-2221
1999-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/145/9/1452221a.html?itemId=/content/journal/micro/10.1099/00221287-145-9-2221&mimeType=html&fmt=ahah

References

  1. Bibb M. J. 1996; The regulation of antibiotic production in Streptomyces coelicolor A3(2). Microbiology 142:1335–1344 [CrossRef]
    [Google Scholar]
  2. Bierman M., Logan R., O’Brien K., Seno E. T., Nagaraj R., Schoner B. E. 1992; Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49 [CrossRef]
    [Google Scholar]
  3. Chakraburtty R., Bibb M. 1997; The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation. J Bacteriol 179:5854–5861
    [Google Scholar]
  4. Chalfie M., Tu Y., Euskirchen G., Ward W., Prasher D. C. 1994; Green fluorescent protein as a marker for gene expression. Science 263:802–805 [CrossRef]
    [Google Scholar]
  5. Chater K. F. 1998; Taking a genetic scalpel to the Streptomyces colony. Microbiology 144:1465–1478 [CrossRef]
    [Google Scholar]
  6. Chater K. F., Bibb M. J. 1997; Regulation of bacterial antibiotic production. In Biotechnology, Vol. 7, Products of Secondary Metabolism pp 57–105Edited by Kleinkauf H., von Döhren H. Weinheim: VCH;
    [Google Scholar]
  7. Chater K. F., Losick R. 1996; The mycelial life-style of Streptomyces coelicolor and its relatives. In Bacteria as Multicellular Systems pp 149–182Edited by Shapiro J. H., Dworkin M. New York: Oxford University Press;
    [Google Scholar]
  8. Cormack B. P., Valdiva R. H., Falkow S. 1996; FACS optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38 [CrossRef]
    [Google Scholar]
  9. Floriano B., Bibb M. 1996; afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 21:385–396 [CrossRef]
    [Google Scholar]
  10. Haas J., Park E.-C., Seed B. 1996; Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr Biol 6:315–324 [CrossRef]
    [Google Scholar]
  11. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  12. Hobbs G., Frazer C., Gardner D. C. J., Cullum J., Oliver S. G. 1989; Dispersed growth of Streptomyces in liquid culture. Appl Microbiol Biotechnol 31:272–277
    [Google Scholar]
  13. Hopwood D. A., Bibb M. J., Chater K. F.7 other authors 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  14. Hopwood D. A., Chater K. F., Bibb M. J. 1995; Genetics of antibiotic production in Streptomyces coelicolor A3(2), a model streptomycete. In Biochemistry and Genetics of Antibiotic Production pp 65–102Edited by Vining L. C., Stuttard C. Newton, MA: Butterworth-Heinemann;
    [Google Scholar]
  15. Kelemen G. H., Buttner M. J. 1998; Initiation of aerial mycelium formation in Streptomyces. Curr Opin Microbiol 1:656–662 [CrossRef]
    [Google Scholar]
  16. Kelemen G. H., Brown G. L., Kormanec J., Potúčková L., Chater K. F., Buttner M. J. 1996; The positions of the sigma factor genes, whiG and sigF, in the hierarchy controlling the development of spore chains in the aerial hyphae of Streptomyces coelicolor A3(2). Mol Microbiol 21:593–603 [CrossRef]
    [Google Scholar]
  17. Kwak J., Kendrick K. 1996; Bald mutants of Streptomyces griseus that prematurely undergo key events of sporulation. J Bacteriol 178:4643–4650
    [Google Scholar]
  18. Leskiw B. K., Bibb M. J., Chater K. F. 1991; The use of a rare codon specifically during development?. Mol Microbiol 5:2861–2867 [CrossRef]
    [Google Scholar]
  19. MacNeil D. J., Occi J. L., Gewain K. M., MacNeil T., Gibbons P. H., Ruby C. L., Danis S. L. 1992; Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase. Gene 115:119–125 [CrossRef]
    [Google Scholar]
  20. Miyadoh S. 1993; Research on antibiotic screening in Japan over the last decade: a producing microorganisms approach. Actinomycetologica 7:100–106 [CrossRef]
    [Google Scholar]
  21. Paget M. S. B., Chamberlin L., Atrih A., Foster S. J., Buttner M. J. 1999a; Evidence that the extracytoplasmic function sigma factor, σE, is required for normal cell wall structure in Streptomyces coelicolor A3(2). J Bacteriol 181:204–211
    [Google Scholar]
  22. Paget M. S. B., Leibovitz E., Buttner M. J. 1999b; A putative two-component signal transduction system regulates σE, a sigma factor required for normal cell wall integrity in Streptomyces coelicolor A3(2). Mol Microbiol 33:97–107 [CrossRef]
    [Google Scholar]
  23. Potúčková L., Kelemen G. H., Findlay K. C., Lonetto M. A., Buttner M. J., Kormanec J. 1995; A new RNA polymerase sigma factor, σF, is required for the late stages of morphological differentiation in Streptomyces spp. Mol Microbiol 17:37–48 [CrossRef]
    [Google Scholar]
  24. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Schauer A., Ranes M., Santamaria R., Guijarro J., Lawlor E., Mendez C., Chater K. F., Losick R. 1988; Visualizing gene expression in time and space in the filamentous bacterium Streptomyces coelicolor. Science 240:768–772 [CrossRef]
    [Google Scholar]
  26. Takano E., Gramajo H. C., Strauch E., Andres N., White J., Bibb M. J. 1992; Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol Microbiol 6:2797–2804 [CrossRef]
    [Google Scholar]
  27. Takano E., White J., Thompson C. J., Bibb M. J. 1995; Construction of thiostrepton-inducible, high-copy-number expression vectors for use in Streptomyces spp. Gene 166:133–137 [CrossRef]
    [Google Scholar]
  28. Tsien R. Y. 1998; The green fluorescent protein. Annu Rev Genet 67:509–544
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-145-9-2221
Loading
/content/journal/micro/10.1099/00221287-145-9-2221
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error