1887

Abstract

After a shift of from aerobic to anaerobic growth conditions, nitrate ammonification and various fermentative processes replace oxygen-dependent respiration. Cell-free extracts prepared from wild-type and from mutants of the regulatory loci and grown under aerobic and various anaerobic conditions were compared by two-dimensional gel electrophoresis. Proteins involved in the adaptation process were identified by their N-terminal sequence. Induction of cytoplasmic lactate dehydrogenase (LctE) synthesis under anaerobic fermentative conditions was dependent on and . Anaerobic nitrate repression of LctE formation required -mediated expression of , encoding respiratory nitrate reductase. Anaerobic induction of the flavohaemoglobin Hmp required and nitrite. The general anaerobic induction of , encoding a protein of unknown function, was modulated by and . The gene shares its upstream region with the gene, encoding the fermentative enzyme acetyl-CoA:orthophosphate acetyltransferase. Anaerobic repression of the synthesis of a potential membrane-associated NADH dehydrogenase (YjlD, Ndh), and anaerobic induction of fructose-1,6-bisphosphate aldolase (FbaA) and dehydrolipoamide dehydrogenase (PhdD, Lpd) formation, did not require or participation. Synthesis of glycerol kinase (GlpK) was decreased under anaerobic conditions. Finally, the effect of anaerobic stress induced by the immediate shift from aerobic to strictly anaerobic conditions was analysed. The induction of various systems for the utilization of alternative carbon sources such as inositol (IolA, IolG, IolH, IolI), melibiose (MelA) and 6-phospho-α-glucosides (GlvA) indicated a catabolite-response-like stress reaction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-1-97
2000-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/1/1460097a.html?itemId=/content/journal/micro/10.1099/00221287-146-1-97&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Böck A., Sawers G. 1996; Fermentation. In Escherichia coli and Salmonella, Cellular and Molecular Biology pp. 262–282Edited by Neidhardt F. C.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. Cruz-Ramos H., Boursier L., Moszer I., Kunst F., Danchin A., Glaser P. 1995; Anaerobic transcription activation in Bacillus subtilis: identification of distinct FNR-dependent and independent regulatory mechanisms. EMBO J 14:5984–5994
    [Google Scholar]
  4. Cunningham L., Georgellis D., Green J., Guest J. R. 1998; Co-regulation of lipoamide dehydrogenase and 2-oxoglutarate dehydrogenase synthesis in Escherichia coli: characterisation of an ArcA binding site in the lpd promoter. FEMS Microbiol Lett 169:403–408 [CrossRef]
    [Google Scholar]
  5. Hayashi S.-L., Lin E. C. C. 1967; Purification and properties of glycerol kinase from Escherichia coli. J Biol Chem 242:1030–1035
    [Google Scholar]
  6. Hoffmann T., Troup B., Szabo A., Hungerer C., Jahn D. 1995; The anaerobic life of Bacillus subtilis. Cloning and characterization of the genes encoding the respiratory nitrate reductase system. FEMS Microbiol Lett 131:219–225 [CrossRef]
    [Google Scholar]
  7. Hoffmann T., Frankenberg N., Marino M., Jahn D. 1998; Ammonification in Bacillus subtilis utilizing dissimilatory nitrite reductase is dependent on resDE. J Bacteriol 180:186–189
    [Google Scholar]
  8. Holmberg C., Rutberg B. 1989; Cloning of the glycerol kinase gene of Bacillus subtilis. FEMS Microbiol Lett 58:151–155 [CrossRef]
    [Google Scholar]
  9. Holmberg C., Beijer L., Ruthberg B., Ruthberg L. 1990; Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3-phosphate dehydrogenase (glpD). J Gen Microbiol 136:2367–2375 [CrossRef]
    [Google Scholar]
  10. Hueck C. J., Hillen W. 1995; Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the Gram-positive bacteria?. Mol Microbiol 15:395–401 [CrossRef]
    [Google Scholar]
  11. Kim J. H., Voskuil M. I., Chambliss G. H. 1998; NADP, corepressor for the Bacillus catabolite control protein CcpA. Proc Natl Acad Sci USA 95:9590–9595 [CrossRef]
    [Google Scholar]
  12. Krüger S., Gert S., Hecker M. 1996; Transcriptional analysis of bglPH expression in Bacillus subtilis: evidence for two distinct pathways mediating carbon catabolite repression. J Bacteriol 178:2637–2644
    [Google Scholar]
  13. LaCelle M., Kumano M., Kurita K., Yamane K., Zuber P., Nakano M. M. 1996; Oxygen-controlled regulation of the flavohemoglobin gene in Bacillus subtilis. J Bacteriol 178:3803–3808
    [Google Scholar]
  14. Liljeström P. L., Liljeström P. 1987; Nucleotide sequence of the melA gene, coding for alpha-galactosidase in Escherichia coli K-12. Nucleic Acids Res 15:2213–2220 [CrossRef]
    [Google Scholar]
  15. Martin-Verstraete I., Stülke J., Klier A., Rapoport G. 1995; Two different mechanisms mediate catabolite repression on the Bacillus subtilis levanase operon. J Bacteriol 177:6919–6927
    [Google Scholar]
  16. Meng W., Green J., Guest J. R. 1997; FNR-dependent repression of ndh gene expression requires two upstream FNR-binding sites. Microbiology 143:1521–1532 [CrossRef]
    [Google Scholar]
  17. Moebius E., Jahn M., Schmid R., Jahn D., Maser E. 1997; Testosterone regulated expression of enzymes involved in steroid and aromatic hydrocarbon catabolism in Comamonas testosteroni. J Bacteriol 179:5951–5955
    [Google Scholar]
  18. Moszer I., Glaser P., Danchin A. 1995; SubtiList: a relational database for the Bacillus subtilis genome. Microbiology 141:261–268 [CrossRef]
    [Google Scholar]
  19. Nakano M. M., Zuber P. 1998; Anaerobic growth of a ‘‘strict aerobe’’ (Bacillus subtilis). Annu Rev Microbiol 52:165–190 [CrossRef]
    [Google Scholar]
  20. Nakano M. M., Zuber P., Glaser P., Danchin A., Hulett M. 1996; Two-component regulatory proteins ResD–ResE are required for transcriptional activation of fnr upon oxygen limitation in Bacillus subtilis. J Bacteriol 178:3796–3802
    [Google Scholar]
  21. Nakano M. M., Dailly Y. P., Zuber P., Clark D. P. 1997; Characterization of anaerobic fermentative growth in Bacillus subtilis: identification of fermentation end products and genes required for the growth. J Bacteriol 179:6749–6755
    [Google Scholar]
  22. Nakano M. M., Hoffmann T., Zhu Y., Jahn D. 1998; Nitrogen and oxygen regulation of Bacillus subtilis nasDEF encoding NADH-dependent nitrite reductase by TnrA and ResDE. J Bacteriol 180:5344–5350
    [Google Scholar]
  23. Okada T., Ueyama K., Niiya S., Kanazawa H., Futai M., Tsuchiya T. 1981; Role of inducer exclusion in preferential utilization of glucose over melibiose in diauxic growth of Escherichia coli. J Bacteriol 146:1030–1037
    [Google Scholar]
  24. Quail M. A., Haydon D. J., Guest J. R. 1994; The pdhR–aceEF–lpd operon of Escherichia coli expresses the pyruvate dehydrogenase complex. Mol Microbiol 12:95–104 [CrossRef]
    [Google Scholar]
  25. Robinson G. A., Bailey C. J., Dowds B. C. A. 1994; Gene structure and amino acid sequences of alcohol dehydrogenases of Bacillus stearothermophilus. Biochim Biophys Acta 1218:432–434 [CrossRef]
    [Google Scholar]
  26. Rompf A., Schmid R., Jahn D. 1998; Changes in protein expression as a consequence of heme depletion in Escherichia coli. Curr Microbiol 37:226–230 [CrossRef]
    [Google Scholar]
  27. Schägger H., von Jagow G. 1991; Blue native gel electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199:223–231 [CrossRef]
    [Google Scholar]
  28. Schmid R., Bernhardt J., Antelmann H., Völker A., Mach H., Völker U., Hecker M. 1997; Identification of vegetative proteins for a two-dimensional protein index of Bacillus subtilis. Microbiology 143:991–998 [CrossRef]
    [Google Scholar]
  29. Tarmy E. M., Kaplan N. O. 1968; Chemical characterisation of d-lactate dehydrogenase from Escherichia coli B. J Biol Chem 243:2579–2586
    [Google Scholar]
  30. Thompson J., Pikis A., Ruvinov S. B., Henrissant B., Yamamoto H., Sekuchi J. 1998; The gene glvA of Bacillus subtilis 168 encodes a metal-requiring, NAD(H)-dependent 6-phospho-α-glucosidase. J Biol Chem 273:27347–27356 [CrossRef]
    [Google Scholar]
  31. Ujita S., Kimura K. 1982; Fructose-1,6-bisphosphate aldolase from Bacillus subtilis. Methods Enzymol 90:235–241
    [Google Scholar]
  32. Völker U., Engelmann S., Maul B., Riethdorf S., Völker A., Schmidt R., Mach H., Hecker M. 1994; Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology 150:741–752
    [Google Scholar]
  33. Yoshida K.-I., Aoyama D., Ishio I., Shibayama T., Fujita Y. 1997; Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis. J Bacteriol 179:4591–4598
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-1-97
Loading
/content/journal/micro/10.1099/00221287-146-1-97
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error