1887

Abstract

Vanadium is a metal that under physiological conditions can exist in two oxidation states, V(IV) (vanadyl ion) and V(V) (vanadate ion). Here, it was demonstrated that both ions can form complexes with siderophores. produces two siderophores under iron-limiting conditions, pyoverdine (PVD) and pyochelin (PCH). Vanadyl sulfate, at a concentration of 1–2 mM, strongly inhibited growth of PAO1, especially under conditions of severe iron limitation imposed by the presence of non-utilizable Fe(III) chelators. PVD-deficient mutants were more sensitive to vanadium than the wild-type, but addition of PVD did not stimulate their growth. Conversely, PCH-negative mutants were more resistant to vanadium than the wild-type strain. Both siderophores could bind and form complexes with vanadium after incubation with vanadyl sulfate (1:1, in the case of PVD; 2:1, in the case of PCH). Although only one complex with PVD, V(IV)–PVD, was found, both V(IV)– and V(V)–PCH were detected. V–PCH, but not V–PVD, caused strong growth reduction, resulting in a prolonged lag phase. Exposure of PAO1 cells to vanadium induced resistance to the superoxide-generating compound paraquat, and conversely, exposure to paraquat increased resistance to V(IV). Superoxide dismutase (SOD) activity of cells grown in the presence of V(IV) was augmented by a factor of two. Mutants deficient in the production of Fe-SOD (SodB) were particularly sensitive to vanadium, whilst mutants deficient for Mn-SOD were only marginally affected. In conclusion, it is suggested that V–PCH catalyses a Fenton-type reaction whereby the toxic superoxide anion is generated, and that vanadium compromises PVD utilization.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-10-2425
2000-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/10/1462425a.html?itemId=/content/journal/micro/10.1099/00221287-146-10-2425&mimeType=html&fmt=ahah

References

  1. Bouby M., Billard I., Maccordick H. J. 1999; Selective behavior of the siderophore pyoverdine A towards , Th4+, U4+ and other cations. Czech J Phys 49:Suppl. 1147–150
    [Google Scholar]
  2. Britigan B. E., Rasmussen G. T., Cox C. D. 1997; Augmentation of oxidant injury to human pulmonary epithelial cells by the Pseudomonas aeruginosa siderophore pyochelin. Infect Immun 65:1071–1076
    [Google Scholar]
  3. Budzikiewicz H. 1993; Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol Rev 104:209–228 [CrossRef]
    [Google Scholar]
  4. Budzikiewicz H. 1997; Siderophores of fluorescent pseudomonads. Z Naturforsch 52C:713–720
    [Google Scholar]
  5. Chen Y., Jurkevitch E., Bar-Ness E., Hadar Y. 1994; Stability constant of pseudobactin complexes with transition metals. Soil Sci Soc Am J 58:390–396 [CrossRef]
    [Google Scholar]
  6. Clare D. A., Duong M. N., Darr D., Archibald F., Fridovich I. 1984; Effects of molecular oxygen on detection of superoxide radical with nitroblue tetrazolium and on activity stains for catalase. Anal Biochem 140:532–537 [CrossRef]
    [Google Scholar]
  7. Coffman T. J., Cox C. D., Edeker B. L., Britigan B. E. 1990; Possible role of bacterial siderophores in inflammation. J Clin Invest 86:1030–1037 [CrossRef]
    [Google Scholar]
  8. Cornelis P., Anjaiah V., Koedam N., Delfosse P., Jacques P., Thonart P., Neirinckx L. 1992; Stability, frequency and multiplicity of transposon insertions in the pyoverdine region in the chromosome of different fluorescent pseudomonads. J Gen Microbiol 138:1337–1343 [CrossRef]
    [Google Scholar]
  9. Cornish A. S., Page W. J. 1998; The catecholate siderophores of Azotobacter vinelandii: their affinity for iron and role in oxygen stress management. Microbiology 144:1747–1754 [CrossRef]
    [Google Scholar]
  10. Cox C. D., Rinehart K. L., Moore M. L., Cook J. C. 1981; Pyochelin: novel structure of an iron chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 78:4256–4260 [CrossRef]
    [Google Scholar]
  11. Crosa J. H. 1997; Signal transduction and transcriptional and postranscriptional control of iron-regulated genes in bacteria. Microbiol Mol Biol Rev 61:319–336
    [Google Scholar]
  12. Duhme A. K., Hider R. C., Naldrett M. J., Pau R. N. 1998; The stability of the molybdenum–azotochelin complex and its effect on siderophore production in Azotobacter vinelandii. J Biol Inorg Chem 3:520–526 [CrossRef]
    [Google Scholar]
  13. Fukuda N., Yamase T. 1997; In vitro antibacterial activity of vanadate and vanadyl compounds against Streptococcus pneumoniae. Biol Pharm Bull 20:927–930 [CrossRef]
    [Google Scholar]
  14. Goldberg J. B., Ohman D. E. 1984; Cloning and expression in Pseudomonas aeruginosa of a gene involved in the production of alginate. J Bacteriol 158:1115–1121
    [Google Scholar]
  15. Hassett D. J., Charniga L., Bean K. A., Ohman D. E., Cohen M. S. 1992; Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstration of a manganese-cofactored superoxide dismutase. Infect Immun 60:328–336
    [Google Scholar]
  16. Hassett D. J., Woodruff W. A., Wozniak D. J., Vasil M. L., Cohen M. S., Ohman D. E. 1993; Cloning and characterization of the Pseudomonas aeruginosa sodA and sodB genes encoding manganese- and iron-cofactored superoxide dismutase: demonstration of increased manganese-superoxide dismutase activity in alginate-producing bacteria. J Bacteriol 175:7658–7665
    [Google Scholar]
  17. Hassett D. J., Schweizer H. P., Ohman D. E. 1995; Pseudomonas aeruginosa sodA and sodB mutants defective in manganese- and iron-cofactored superoxide dismutase activity demonstrate the importance of the iron-cofactored form in aerobic metabolism. J Bacteriol 177:6330–6337
    [Google Scholar]
  18. Hassett D. J., Sokol P. A., Howell M. L., Ma J. F., Schweizer H. T., Ochsner U. A., Vasil M. L. 1996; Ferric uptake regulator (Fur) mutants of Pseudomonas aeruginosa demonstrate defective siderophore-mediated iron uptake, altered aerobic growth, and decreased superoxide dismutase and catalase activities. J Bacteriol 178:3996–4003
    [Google Scholar]
  19. Hassett D. J., Howell M. L., Ochsner U. A., Vasil M. L., Johnson Z., Dean G. E. 1997a; An operon containing fumC and sodA encoding fumarase C and manganese superoxide dismutase is controlled by the ferric uptake regulator in Pseudomonas aeruginosa: fur mutants produce elevated alginate levels. J Bacteriol 179:1452–1459
    [Google Scholar]
  20. Hassett D. J., Howell M. L., Sokol P. A., Vasil M. L., Dean G. E. 1997b; Fumarase C activity is elevated in response to iron deprivation and in mucoid, alginate-producing Pseudomonas aeruginosa: cloning and characterization of fumC and purification of native FumC. J Bacteriol 179:1442–1451
    [Google Scholar]
  21. Höfte M., Buysens S., Koedam N., Cornelis P. 1993; Zinc affects siderophore-mediated high affinity iron uptake systems in the rhizosphere Pseudomonas aeruginosa 7NSK2. Biometals 6:85–91
    [Google Scholar]
  22. Hohnadel D., Meyer J. M. 1988; Specificity of pyoverdine-mediated iron uptake among fluorescent Pseudomonas. J Bacteriol 170:4865–4873
    [Google Scholar]
  23. Hohnadel D., Haas D., Meyer J. M. 1986; Mapping of mutations affecting pyoverdine production in Pseudomonas aeruginosa. . FEMS Microbiol Lett 36:195–199 [CrossRef]
    [Google Scholar]
  24. Keller R. J., Rush J. D., Grover T. A. 1991; Spectrophotometric and ESR evidence for vanadium(IV) deferioxamine complexes. J Inorg Biochem 41:269–276 [CrossRef]
    [Google Scholar]
  25. Klasen H. J. 2000; A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 26:131–138 [CrossRef]
    [Google Scholar]
  26. Liochev S., Fridovich I. 1987; The oxidation of NADH by tetravalent vanadium. Arch Biochem Biophys 255:274–278 [CrossRef]
    [Google Scholar]
  27. Marklund S., Marklund G. 1974; Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474 [CrossRef]
    [Google Scholar]
  28. Meyer J.-M., Hohnadel D., Hallé F. 1989; Cepabactin from Pseudomonas cepacia, a new type of siderophore. J Gen Microbiol 135:1479–1487
    [Google Scholar]
  29. Meyer J.-M., Neely A., Stintzi A., Georges C., Holder I. A. 1996; Pyoverdine is essential for virulence of Pseudomonas aeruginosa. Infect Immun 64:518–523
    [Google Scholar]
  30. Meyer J.-M., Stintzi A., De Vos D., Cornelis P., Tappe R., Taraz K., Budzikiewicz H. 1997; Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology 143:35–43 [CrossRef]
    [Google Scholar]
  31. Ochsner U. A., Vasil M. L. 1996; Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: cycle selection of iron-regulated genes. Proc Natl Acad Sci U S A 93:4409–4414 [CrossRef]
    [Google Scholar]
  32. Poppe K., Taraz K., Budzikiewicz H. 1987; Pyoverdine type siderophores from Pseudomonas fluorescens. Tetrahedron 43:2261–2272
    [Google Scholar]
  33. Rehder D. 1991; The bioorganic chemistry of vanadium. Angew Chem 30:148–167 [CrossRef]
    [Google Scholar]
  34. Rehder D. 1992; Structure and function of vanadium compounds in living organisms. Biometals 5:3–12 [CrossRef]
    [Google Scholar]
  35. Saponja J. A., Vogel H. J. 1996; Metal-ion binding properties of the transferrins: a vanadium-51 NMR study. J Inorg Biochem 62:253–270 [CrossRef]
    [Google Scholar]
  36. Schweizer H. P., Hoang T. T. 1995; An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene 158:15–22 [CrossRef]
    [Google Scholar]
  37. Schwyn B., Neilands J. B. 1987; Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56 [CrossRef]
    [Google Scholar]
  38. Serino L., Reimmann C., Baur H., Beyeler M., Visca P., Haas D. 1995; Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Mol Gen Genet 249:217–228 [CrossRef]
    [Google Scholar]
  39. Serino L., Reimmann C., Visca P., Beyeler M., Della-Chiesa V., Haas D. 1997; Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa. J Bacteriol 179:248–257
    [Google Scholar]
  40. Simon R., Priefer U., Puehller A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology 1:784–791 [CrossRef]
    [Google Scholar]
  41. Srivastava A. K. 2000; Anti-diabetic and toxic effects of vanadium compounds. Mol Cell Biochem 206:177–182 [CrossRef]
    [Google Scholar]
  42. Stern A., Davison A. J., Wu Q., Moon J. 1992; Desferrioxamine enhances the reactivity of vanadium (IV) toward ferri- and ferrocytochrome c. Free Radical Biol Med 12:373–380 [CrossRef]
    [Google Scholar]
  43. Vasil M. L., Ochsner U. A. 1999; The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. . Mol Microbiol 34:399–413 [CrossRef]
    [Google Scholar]
  44. Visca P., Colotti G., Serino L., Versili D., Orsi N., Chiancone E. 1992; Metal regulation of siderophore synthesis in Pseudomonas aeruginosa and functional effects of siderophore–metal complexes. Appl Environ Microbiol 58:2886–2893
    [Google Scholar]
  45. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-10-2425
Loading
/content/journal/micro/10.1099/00221287-146-10-2425
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error