1887

Abstract

Several different species of produce -acylhomoserine lactones (AHLs), quorum-sensing signal molecules which are involved in the cell-density-dependent control of secondary metabolite and virulence gene expression. When F113 was cross-streaked against AHL biosensors capable of sensitively detecting either short (C–C) or long (C–C) acyl chain AHLs, no activity was detectable. However, by extracting cell-free stationary-phase culture supernatants with dichloromethane followed by reverse-phase HPLC, three distinct fractions were obtained capable of activating the AHL biosensors. Three AHLs were subsequently characterized using high-resolution MS and chemical synthesis. These were (i) -(3-hydroxy-7--tetradecenoyl)homoserine lactone (3OH,C-HSL), a molecule previously known as the bacteriocin as a consequence of its growth inhibitory properties, (ii) -decanoylhomoserine lactone (C-HSL) and (iii) -hexanoylhomoserine lactone (C-HSL). A gene () capable of directing synthesis of all three AHLs in was cloned and sequenced. transcription/translation of yielded a protein of approximately 33 kDa capable of directing the synthesis of 3OH,C-HSL, C-HSL and C-HSL in . HdtS does not belong to either of the known AHL synthase families (LuxI or LuxM) and is related to the lysophosphatidic acid acyltransferase family. HdtS may therefore constitute a member of a third protein family capable of AHL biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-10-2469
2000-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/10/1462469a.html?itemId=/content/journal/micro/10.1099/00221287-146-10-2469&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Atkinson S., Throup J. P., Stewart G. S. A. B., Williams P. 1999; A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol Microbiol 33:1267–1277
    [Google Scholar]
  3. Bainton N. J., Bycroft B. W., Chhabra S. R.8 other authors 1992; A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in Erwinia. Gene 116:87–91 [CrossRef]
    [Google Scholar]
  4. Bassler B. L., Wright M., Showalter R. E., Silverman M. R. 1993; Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of bioluminescence. Mol Microbiol 9:773–786 [CrossRef]
    [Google Scholar]
  5. Cámara M., Daykin M., Chhabra S. R. 1998; Detection, purification and synthesis of N-acyl homoserine lactone quorum sensing molecules. Methods Microbiol 27:319–330
    [Google Scholar]
  6. Cha C., Gao P., Chen Y.-C., Shaw P. D., Farrand S. K. 1998; Production of acyl-homoserine lactone quorum-sensing signals by Gram-negative plant-associated bacteria. Mol Plant–Microbe Interact 11:1119–1129 [CrossRef]
    [Google Scholar]
  7. Chapon-Hervé V., Akrim M., Latifi A., Williams P., Lazdunski A., Bally M. 1997; Regulation of xcp secretion pathway by multiple quorum sensing modulons in Pseudomonas aeruginosa. Mol Microbiol 24:1169–1178 [CrossRef]
    [Google Scholar]
  8. Chhabra S. R., Stead P., Bainton N. J., Salmond G. P., Stewart G. S. A. B., Williams P., Bycroft B. W. 1993; Autoregulation of carbapenem biosynthesis in Erwinia carotovora ATCC 39048 by analogues of N-(3-oxohexanoyl)-l-homoserine lactone. J Antibiot 46:441–454 [CrossRef]
    [Google Scholar]
  9. Delany I., Sheehan M. M., Fenton A., Bardin S., Aarons S., O’Gara F. 2000; Regulation of production of the antifungal metabolite 2,4-diacetylphloroglucinol in Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor. Microbiology 146:537–546
    [Google Scholar]
  10. Dunny G. M., Winans S. C. 1999 Cell–Cell Signalling in Bacteria Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Eberl L., Winson M. K., Sternberg C.7 other authors 1996; Involvement of N-acyl-l-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol 20:127–136 [CrossRef]
    [Google Scholar]
  12. England R., Hobbs G., Bainton N., Roberts D. M. 1999 Microbial Signalling and CommunicationSociety for General Microbiology Symposium 57 Cambridge: Cambridge University Press;
    [Google Scholar]
  13. Fenton A. M., Stephens P. M., Crowley J., O’Callaghan M., O’Gara F. 1992; Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Appl Environ Microbiol 58:3873–3878
    [Google Scholar]
  14. Fuqua W. C., Winans S. C., Greenberg E. P. 1996; Census and consensus in bacterial ecosystems: the LuxR-LuxI family of cell quorum-sensing regulators. Annu Rev Microbiol 50:727–751 [CrossRef]
    [Google Scholar]
  15. Gilson L., Kuo A., Dunlap P. V. 1995; AinS and a new family of autoinducer synthase proteins. J Bacteriol 177:6946–6951
    [Google Scholar]
  16. Glessner A., Smith R. S., Iglewski B. H., Robinson J. B. 1999; Roles of the Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of twitching motility. J Bacteriol 181:1623–1629
    [Google Scholar]
  17. Gouy M., Gautier C., Attimonelli M., Lanave C., di Paola G. 1985; acnuc – a portable retrieval system for nucleic acid sequence databases: logical and physical designs and usage. Comput Appl Biosci 1:167–172
    [Google Scholar]
  18. Gray K. M., Pearson J. P., Downie J. A., Boboye B. E. A., Greenberg E. P. 1996; Cell-to-cell signaling in the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum: autoinduction of a stationary phase and rhizosphere-expressed genes. J Bacteriol 178:372–376
    [Google Scholar]
  19. Hanzelka B. L., Greenberg E. P. 1996; Quorum sensing in Vibrio fischeri: evidence that S-adenosylmethionine is the amino acid substrate for the autoinducer synthesis. J Bacteriol 178:5291–5294
    [Google Scholar]
  20. Hanzelka B. L., Parsek M. R., Val D. L., Dunlap P. V., Cronan J. E. Jr, Greenberg E. P. 1999; Acylhomoserine lactone synthase activity of the Vibrio fischeri AinS protein. J Bacteriol 181:5766–5770
    [Google Scholar]
  21. Hirsch P. R. 1979; Plasmid-determined bacteriocin production by Rhizobium leguminosarum. J Gen Microbiol 113:219–228 [CrossRef]
    [Google Scholar]
  22. Holden M. T. G., Chhabra S. R., de Nys R.14 other authors 1999; Quorum sensing cross-talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria. Mol Microbiol 33:1254–1266
    [Google Scholar]
  23. Jiang Y., Cámara M., Chhabra S. R., Hardie K. R., Bycroft B. W., Lazdunski A., Salmond G. P. C., Stewart G. S. A. B., Williams P. 1998; In vitro biosynthesis of the Pseudomonas aeruginosa quorum-sensing signal molecule N-butanol-l-homoserine lactone. Mol Microbiol 28:193–203
    [Google Scholar]
  24. Kuo A., Blough N. V., Dunlap P. V. 1994; Multiple N-acyl-l-homoserine lactone autoinducers of luminescence in the marine symbiotic bacterium Vibrio fischeri. J Bacteriol 176:7558–7565
    [Google Scholar]
  25. Latifi A., Winson M. K., Foglino M., Bycroft B. W., Stewart G. S. A. B., Lazdunski A., Williams P. 1995; Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17:333–343 [CrossRef]
    [Google Scholar]
  26. Latifi A., Foglino M., Tanaka K., Williams P., Lazdunski A. 1996; A hierarchical quorum sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhlR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146 [CrossRef]
    [Google Scholar]
  27. Lithgow J. K., Wilkinson A., Hardman A., Rodelas B., Wisniewski-Dye F., Williams P., Downie J. A. 2000; The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum sensing loci. Mol Microbiol 37:81–97 [CrossRef]
    [Google Scholar]
  28. McClean K. H., Winson M. K., Fish L.9 other authors 1997; Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711 [CrossRef]
    [Google Scholar]
  29. Milton D. L., Hardman A., Cámara M., Chhabra S. R., Bycroft B. W., Stewart G. S. A. B., Williams P. 1997; Quorum sensing in Vibrio anguillarum: characterization of the vanI/vanR locus and identification of the autoinducer N-(3-oxodecanoyl)-l-homoserine lactone. J Bacteriol 179:3004–3012
    [Google Scholar]
  30. Moré M. I., Finger L. D., Stryker J. L., Fuqua C., Eberhard A., Winans S. C. 1996; Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science 272:1655–1658 [CrossRef]
    [Google Scholar]
  31. Parsek M. R., Val D. L., Hanzelka B. L., Cronan J. E., Greenberg E. P. 1999; Acyl homoserine lactone quorum sensing signal generation. Proc Natl Acad Sci U S A 96:4360–4365 [CrossRef]
    [Google Scholar]
  32. Pearson J. P., Gray K. M., Passador L., Tucker K. D., Eberhard A., Iglewski B. H., Greenberg E. P. 1994; Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci USA 91:197–201 [CrossRef]
    [Google Scholar]
  33. Pearson J. P., Passador L., Iglewski B. H., Greenberg E. P. 1995; A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92:1490–1494 [CrossRef]
    [Google Scholar]
  34. Pesci E. C., Pearson J. P., Seed P. C., Iglewski B. W. 1997; Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3127–3132
    [Google Scholar]
  35. Puskas A., Greenberg E. P., Kaplan S., Schaefer A. L. 1997; A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J Bacteriol 179:7530–7537
    [Google Scholar]
  36. Rainey P. B. 1999; Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1:243–257 [CrossRef]
    [Google Scholar]
  37. Rock C. O., Jackowski S., Cronan J. E. Jr 1996; Lipid metabolism in prokaryotes. In Biochemistry of Lipids, Lipoproteins and Membranes pp. 35–74Edited by Vance D., Vance J. Amsterdam: Elsevier;
    [Google Scholar]
  38. Rodelas B., Lithgow J. K., Wisniewski-Dye F., Hardman A., Wilkinson A., Economou A., Williams P., Downie J. A. 1999; Analysis of quorum-sensing-dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. viciae. J Bacteriol 181:3816–3823
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Schaefer A. L., Val D. L., Hanzelka B. L., Cronan J. E. Jr, Greenberg E. P. 1996; Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of purified Vibrio fischeri LuxI protein. Proc Natl Acad Sci U S A 93:9505–9509 [CrossRef]
    [Google Scholar]
  41. Scher F. M., Baker R. 1982; Effects of Pseudomonas putida and a synthetic iron chelator on induction of soil suppresiveness to Fusarium wilt pathogens. Phytopathology 72:1567–1573 [CrossRef]
    [Google Scholar]
  42. Schripsema J., de Rudder K. E. E., van Vliet T. B., Lankhorst P. P., de Vroom E., Kijne J. W., van Brussel A. A. N. 1996; Bacteriocin small of Rhizobium leguminosarum belongs to the class of N-acyl-l-homoserine lactone molecules, known as autoinducers and as quorum sensing co-transcription factors. J Bacteriol 178:366–371
    [Google Scholar]
  43. Shanahan P., O’Sullivan D. J., Simpson P., Glennon G., O’Gara F. 1992; Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters affecting its production. Appl Environ Microbiol 58:353–358
    [Google Scholar]
  44. Shaw P. D., Gao P., Daly S. L., Cha C., Cronan J. E. M. Jr, Rinehart K. L., Farrand S. K. 1997; Detecting and characterizing N-acylhomoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci U S A 94:6036–6041 [CrossRef]
    [Google Scholar]
  45. Shih G. C., Kahler C. M., Swartley J. S., Rahman M. M., Coleman J., Carlson R. W., Stevens D. S. 1999; Multiple lysophosphatidic acid acyltransferases in Neisseria meningitidis. Mol Microbiol 32:942–952 [CrossRef]
    [Google Scholar]
  46. Swift S., Winson M. K., Chan P. F.11 other authors 1993; A novel strategy for the isolation of luxI homologues: evidence for the widespread distribution of a LuxR:LuxI superfamily in enteric bacteria. Mol Microbiol 10:511–520 [CrossRef]
    [Google Scholar]
  47. Swift S., Throup J. P., Williams P., Salmond G. P. C., Stewart G. S. A. B. 1996; Quorum sensing: a population density component in the determination of bacterial phenotype. Trends Biochem Sci 21:214–219 [CrossRef]
    [Google Scholar]
  48. Swift S., Karlyshev A. V., Fish L., Durant E. L., Winson M. K., Chhabra S. R., Williams P., Macintyre S., Stewart G. S. A. B. . 1997; Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. J Bacteriol 179:5271–5281
    [Google Scholar]
  49. Swift S., Williams P., Stewart G. S. A. B. 1999; N-Acylhomoserine lactones and quorum sensing in proteobacteria. In Cell–Cell Signalling in Bacteria pp. 291–313Edited by Dunny G., Winans S. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  50. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  51. Thorne S. H., Williams H. D. 1999; Cell density-dependent starvation survival of Rhizobium leguminosarum bv. phaseoli: identification for the role of an N-acyl homoserine lactone in adaptation to stationary-phase survival. J Bacteriol 181:981–990
    [Google Scholar]
  52. Throup J. K., Cámara M., Briggs G. S., Winson M. K., Chhabra S. R., Bycroft B. W., Williams P., Stewart G. S. A. B. 1995; Characterisation of the yenI/yenR locus from Yersinia enterocolitica mediating the synthesis of two quorum sensing molecules. Mol Microbiol 17:345–356 [CrossRef]
    [Google Scholar]
  53. Val D. L., Cronan J. E. Jr 1998; In vivo evidence that S-adenosylmethionine and fatty acid intermediates are the substrates for the LuxI family of autoinducer synthases. J Bacteriol 180:2644–2651
    [Google Scholar]
  54. West J., Tompkins C. K., Balantac N., Nudelman E., Meengs B., White T. 1997; Cloning and expression of two human lysophosphatidic acid acyltransferase cDNAs that encode cytokine-induced signalling response in cells. DNA Cell Biol 16:691–701
    [Google Scholar]
  55. Wijffelman C. A., Pees E., van Brussel A. A. N., Hooykaas P. J. J. 1983; Repression of small bacteriocin excretion in Rhizobium leguminosarum and Rhizobium trifolii by transmissible plasmids. Mol Gen Genet 192:171–176 [CrossRef]
    [Google Scholar]
  56. Williams P. C., á mara M., Hardman A.7 other authors 2000; Quorum sensing and the population dependent control of virulence. Philos Trans R Soc Lond B Biol Sci 355:667–680 [CrossRef]
    [Google Scholar]
  57. Winson M. K. C, ámara M., Latifi A.10 other authors 1995; Multiple N-acyl-l-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92:9427–9431 [CrossRef]
    [Google Scholar]
  58. Winson M. K., Swift S., Fish L., Throup J. P., Jorgensen F., Chhabra S. R., Bycroft B. W., Williams P., Stewart G. S. A. B. 1998; Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acylhomoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163:185–192 [CrossRef]
    [Google Scholar]
  59. Wood D. W., Gong F., Daykin M., Williams P., Pierson L. S. 1997; N-Acylhomoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J Bacteriol 179:7663–7670
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-10-2469
Loading
/content/journal/micro/10.1099/00221287-146-10-2469
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error