1887

Abstract

Although much is known about the bacterial cellulosome and its various protein components, their contributions to bacterial growth on cellulose and the process of cellulolysis cannot currently be assessed. To remedy this, the authors have developed gene transfer techniques for ATCC 35319. Firstly, transfer of Tn has been obtained using an donor. Secondly, IncP-mediated conjugative mobilization of plasmids from donors has also been achieved. The yield of transconjugants in both cases was low and was probably limited by the suboptimal growth conditions that must of necessity be employed for the co-culture of oligotrophic with copiotrophic donors. A restriction endonuclease was detected in crude extracts of . This enzyme, named I, is an isoschizomer of I (II). Electro-transformation was employed to establish plasmids containing the replication functions of pAMβ1 (), pIM13 (), pCB102 (), pIP404 () and pWV01 ( subsp. ) in . Transformants were only obtained if the DNA was appropriately methylated on the external C of the sequence 5′-CCGG-3′ using either FI methylase or I methylase . Plasmids based on the pAMβ1 and pIM13 replicons were more stably maintained than one based on the pCB102 replicon. Selection of transformants on solid medium led to low apparent transformation efficiencies (approx. 10 transformants per μg DNA) which might, in part, reflect the low plating efficiency of the organism. Selection of transformants in liquid medium led to a higher apparent yield of transformants (between 10 and 10 transformants per μg DNA). The methods developed here will pave the way for functional analysis of the various cellulosome components .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-12-3071
2000-12-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/12/1463071a.html?itemId=/content/journal/micro/10.1099/00221287-146-12-3071&mimeType=html&fmt=ahah

References

  1. Anderson K. L., Megehee J. A., Varel V. H. 1998; Conjugal transfer of transposon Tn1545 into the cellulolytic bacterium Eubacterium cellulosolvens. Lett Appl Microbiol 26:35–37 [CrossRef]
    [Google Scholar]
  2. Awad M. M., Bryant A. E., Stevens D. L., Rood J. I. 1995; Virulence studies on chromosomal α-toxin and θ-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of α-toxin in Clostridium perfringens-mediated gas gangrene. Mol Microbiol 15:191–202 [CrossRef]
    [Google Scholar]
  3. Azeddoug H., Reysset G. 1991; Recognition sequence of a new methyl-specific restriction system from Clostridium acetobutylicum strain ABKn8. FEMS Microbiol Lett 78:153–156 [CrossRef]
    [Google Scholar]
  4. Azeddoug H., Hubert J., Reysset G. 1989; Characterization of a methyl-specific restriction system in Clostridium acetobutylicum strain N1-4081. FEMS Microbiol Lett 65:323–326 [CrossRef]
    [Google Scholar]
  5. Azeddoug H., Hubert J., Reysset G. 1992; Stable inheritance of shuttle vectors based on plasmid pIM13 in a mutant strain of Clostridium acetobutylicum. J Gen Microbiol 138:1371–1378 [CrossRef]
    [Google Scholar]
  6. Bayer E. A., Shimon L. J. W., Shoham Y., Lamed R. 1998; Cellulosomes – structure and ultrastructure. J Struct Biol 124:221–234 [CrossRef]
    [Google Scholar]
  7. Bélaich J.-P., Tardif C., Bélaich A., Gaudin C. 1997; The cellulolytic system of Clostridium cellulolyticum. J Biotechnol 57:3–14 [CrossRef]
    [Google Scholar]
  8. Biswas I., Gruss A., Ehrlich S. D., Maguin E. 1993; High-efficiency gene inactivation and replacement system for Gram-positive bacteria. J Bacteriol 175:3628–3635
    [Google Scholar]
  9. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472 [CrossRef]
    [Google Scholar]
  10. Brehm J. K., Pennock A., Bullman H. M. S., Young M., Oultram J. D., Minton N. P. 1992; Physical characterization of the replication origin of the cryptic plasmid pCB101 isolated from Clostridium butyricum NCIB7423. Plasmid 28:1–13 [CrossRef]
    [Google Scholar]
  11. Bruand C., Le Chatelier E., Ehrlich S. D., Jannière L. 1993; A 4th class of theta-replicating plasmids: the pAMβ1 family from Gram-positive bacteria. Proc Natl Acad Sci USA 90:11668–11672 [CrossRef]
    [Google Scholar]
  12. Caillaud F., Carlier C., Courvalin P. 1987; Physical analysis of the conjugative shuttle transposon Tn1545. Plasmid 17:58–60 [CrossRef]
    [Google Scholar]
  13. Clewell D. B., Flannagan S. E. 1993; The conjugative transposons of Gram-positive bacteria. In Bacterial Conjugation pp. 369–393Edited by Clewell D. B. New York: Plenum Press;
    [Google Scholar]
  14. Collins M. E., Oultram J., Young M. 1985; Identification of restriction fragments from two cryptic Clostridium butyricum plasmids that promote the establishment of a replication-defective plasmid in Bacillus subtilis. J Gen Microbiol 131:2097–2105
    [Google Scholar]
  15. Courvalin P., Carlier C. 1986; Transposable multiple antibiotic resistance in Streptococcus pneumoniae. Mol Gen Genet 205:291–297 [CrossRef]
    [Google Scholar]
  16. Courvalin P., Carlier C. 1987; Tn1545: a conjugative shuttle transposon. Mol Gen Genet 206:259–264 [CrossRef]
    [Google Scholar]
  17. Davis T. O., Henderson I., Brehm J. K., Minton N. P. 2000; Development of a transformation and gene reporter system for group II, non-proteolytic Clostridium botulinum type B strains. J Mol Microbiol Biotechnol 2:59–69
    [Google Scholar]
  18. Doi R. H., Park J.-S., Liu C.-C., Malburg L. M., Tmaru Y., Ichiishi A., Ibrahim A. 1998; Cellulosome and non-cellulosomal cellulases of Clostridium cellulovorans. Extremophiles 2:53–60 [CrossRef]
    [Google Scholar]
  19. Ehrlich S. D., Bruand C., Sozhamannan S., Dabert P., Gros M. F., Jannière L., Gruss A. 1991; Plasmid replication and structural stability in Bacillus subtilis. Res Microbiol 142:869–873 [CrossRef]
    [Google Scholar]
  20. Evans V. J., Liyanage H., Ravagnani A., Young M., Kashket E. R. 1998; Truncation of peptide deformylase reduces the growth rate and stabilizes solvent production in Clostridium beijerinckii NCIMB 8052. Appl Environ Microbiol 64:1780–1785
    [Google Scholar]
  21. Felix C. R., Ljungdahl L. G. 1993; The cellulosome: the exocellular organelle of Clostridium. Annu Rev Microbiol 47:791–819 [CrossRef]
    [Google Scholar]
  22. Franke A. E., Clewell D. B. 1981; Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of ‘‘conjugal’’ transfer in the absence of a conjugative plasmid. J Bacteriol 145:494–502
    [Google Scholar]
  23. Gal L., Pagès S., Gaudin C., Bélaich A., Reverbel-Leroy C., Tardif C., Bélaich J.-P. 1997; Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum. Appl Environ Microbiol 63:903–909
    [Google Scholar]
  24. Garcia-Martinez D. V., Shinmyo A., Madia A., Demain A. L. 1980; Studies on cellulase production by Clostridium thermocellum. Eur J Appl Microbiol Biotechnol 9:189–197 [CrossRef]
    [Google Scholar]
  25. Garnier T., Cole S. T. 1988; Complete nucleotide sequence and genetic organization of the bacteriocinogenic plasmid, pIP404, from Clostridium perfringens. Plasmid 19:134–150 [CrossRef]
    [Google Scholar]
  26. Gelhaye E., Gehin A., Petitdemange H. 1993a; Colonization of crystalline cellulose by Clostridium cellulolyticum ATCC 35319. Appl Environ Microbiol 59:3154–3156
    [Google Scholar]
  27. Gelhaye E., Petitdemange H., Gay R. 1993b; Adhesion and growth rate of Clostridium cellulolyticum ATCC 35319 on crystalline cellulose. J Bacteriol 175:3452–3458
    [Google Scholar]
  28. Giallo J., Gaudin C., Bélaich J.-P. 1985; Metabolism and solubilization of cellulose by Clostridium cellulolyticum H10. Appl Environ Microbiol 49:1216–1221
    [Google Scholar]
  29. Green E. M., Boynton Z. L., Harris L. M., Rudolph F. B., Papoutsakis E. T., Bennett G. N. 1996; Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142:2079–2086 [CrossRef]
    [Google Scholar]
  30. Gruss A., Ehrlich S. D. 1988; Insertion of foreign DNA into plasmids from Gram-positive bacteria induces formation of high-molecular-weight plasmid multimers. J Bacteriol 170:1183–1190
    [Google Scholar]
  31. Gruss A., Ehrlich S. D. 1989; The family of highly interrelated single-stranded deoxyribonucleic-acid plasmids. Microbiol Rev 53:231–241
    [Google Scholar]
  32. Guedon E., Payot S., Desvaux M., Petitdemange H. 1999a; Carbon and electron flow in Clostridium cellulolyticum grown in chemostat culture on synthetic medium. J Bacteriol 181:3262–3269
    [Google Scholar]
  33. Guedon E., Payot S., Desvaux M., Petitdemange H. 1999b; Growth inhibition of Clostridium cellulolyticum by an inefficiently regulated carbon flow. Microbiology 145:1831–1838 [CrossRef]
    [Google Scholar]
  34. Hanahan D. 1985; Techniques for transformation of E. coli. In DNA Cloning, a Practical Approach vol. 1 pp. 109–135Edited by Glover D. M. Oxford: IRL Press;
    [Google Scholar]
  35. Hedges R. W., Jacob A. E. 1974; Transposition of ampicillin resistance from RP4 to other replicons. Mol Gen Genet 132:31–34 [CrossRef]
    [Google Scholar]
  36. Hinds J., Mahenthiralingam E., Kempsell K. E., Duncan K., Stokes R. W., Parish T., Stoker N. G. 1999; Enhanced gene replacement in mycobacteria. Microbiology 145:519–527 [CrossRef]
    [Google Scholar]
  37. Kok J., van der Vossen J. M. B. M., Venema G. 1984; Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Appl Environ Microbiol 48:726–731
    [Google Scholar]
  38. LeBlanc D. J., Lee L. N. 1984; Physical and genetic analyses of streptococcal plasmid pAMβ1 and cloning of its replication region. J Bacteriol 157:445–453
    [Google Scholar]
  39. Leenhouts K. J., Olner B., Bron S., Kok J., Venema G., Sleegers J. F. M. L. 1991; Nucleotide sequence and characterization of the broad-host-range lactococcal plasmid pWV01. Plasmid 26:55–66 [CrossRef]
    [Google Scholar]
  40. Maguin E., Duwat P., Hege T., Ehrlich S. D., Gruss A. 1992; New thermosensitive plasmid for Gram-positive bacteria. J Bacteriol 174:5633–5638
    [Google Scholar]
  41. Mermelstein L., Papoutsakis E. T. 1993; In vivo methylation in Escherichia coli by the Bacillus subtilis phage ϕ3Ti methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobuytlicum ATCC824. Appl Environ Microbiol 59:1077–1081
    [Google Scholar]
  42. Minton N. P., Morris J. G. 1981; Isolation and partial characterization of three cryptic plasmids from strains of Clostridium butyricum. J Gen Microbiol 127:325–331
    [Google Scholar]
  43. Minton N. P., Brehm J. K., Swinfield T.-J., Whelan S. M., Mauchline M. L., Bodsworth N., Oultram J. D. 1993; Clostridial cloning vectors. In The Clostridia and Biotechnology pp. 119–150Edited by Woods D. R. Boston: Butterworth-Heinemann;
    [Google Scholar]
  44. Monod M., Dnoya C., Dubnau D. 1986; Sequence and properties of pIM13, a macrolide-lincosmide-streptogramin B resistance plasmid from Bacillus subtilis. J Bacteriol 167:138–147
    [Google Scholar]
  45. Mullany P., Wilks M., Tabaqchali S. 1991; Transfer of Tn916and Tn916ΔE into Clostridium difficile:demonstration of a hot-spot for these elements in the C. difficilegenome. FEMS Microbiol Lett 79:191–194
    [Google Scholar]
  46. Noirot Ph., Petit M.-A., Ehrlich S. D. 1987; Plasmid replication stimulates DNA recombination in Bacillus subtilis. J Mol Biol 196:39–47 [CrossRef]
    [Google Scholar]
  47. Oultram J. D., Loughlin M., Swinfield T.-J., Brehm J. K., Thompson D. E., Minton N. P. 1988; Introduction of plasmids into whole cells of Clostridium acetobutylicum by electroporation. FEMS Microbiol Lett 56:83–88 [CrossRef]
    [Google Scholar]
  48. Pagès S., Gal L., Bélaich A., Gaudin C., Tardif C., Bélaich J.-P. 1997; Role of scaffolding protein CipC of Clostridium cellulolyticum in cellulose degradation. J Bacteriol 179:2810–2816
    [Google Scholar]
  49. Pagès S., Bélaich A., Fiérobe H.-P., Tardif C., Gaudin C., Bélaich J.-P. 1999; Sequence analysis of scaffolding protein CipC and ORFXp, a new cohesin-containing protein in Clostridium cellulolyticum: comparison of various cohesin domains and subcellular localization of ORFXp. J Bacteriol 181:1801–1810
    [Google Scholar]
  50. Payot S., Guedon E., Cailliez C., Gelhaye E., Petitdemange H. 1998; Metabolism of cellobiose by Clostridium cellulolyticum growing in continuous culture: evidence for decreased NADH reoxidation as a factor limiting growth. Microbiology 144:375–384 [CrossRef]
    [Google Scholar]
  51. Petitdemange E., Caillet F., Giallo J., Gaudin C. 1984; Clostridium cellulolyticum sp. nov., a cellulolytic, mesophilic species from decayed grass. Int J Syst Bacteriol 34:155–159 [CrossRef]
    [Google Scholar]
  52. Reverbel-Leroy C., Pagès S., Bélaich A., Bélaich J.-P., Tardif C. 1997; The processive endocellulase CelF, a major component of the Clostridium cellulolyticum cellulosome: purification and characterization of the recombinant form. J Bacteriol 179:46–52
    [Google Scholar]
  53. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  54. Scott J. R., Churchward G. G. 1995; Conjugative transposition. Annu Rev Microbiol 49:367–397 [CrossRef]
    [Google Scholar]
  55. Shoham Y., Lamed R., Bayer E. A. 1999; The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 7:275–281 [CrossRef]
    [Google Scholar]
  56. Sloan J., Warner T. A., Scott P. T., Bannan T. L., Berryman D. I., Rood J. I. 1992; Construction of a sequenced Clostridium perfringens-Escherichia coli shuttle plasmid. Plasmid 27:207–219 [CrossRef]
    [Google Scholar]
  57. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517 [CrossRef]
    [Google Scholar]
  58. Thomas C. M., Smith C. A. 1987; Incompatiblity group P plasmids: genetics, evolution, and use in genetic manipulation. Annu Rev Microbiol 41:77–101 [CrossRef]
    [Google Scholar]
  59. Trieu-Cuot P., Carlier C., Martin P., Courvalin P. 1987; Plasmid transfer by conjugation from Escherichia coli to Gram-positive bacteria. FEMS Microbiol Lett 48:289–294 [CrossRef]
    [Google Scholar]
  60. Walter J., Noyerweidner M., Trautner T. A. 1990; The amino-acid-sequence of the CCGG recognizing DNA methyltransferase M.BsuFI – implications for the analysis of sequence recognition by cytosine DNA methyltransferases. EMBO J 9:1007–1013
    [Google Scholar]
  61. Wilkinson S., Young M. 1994; Targeted integration of genes into the Clostridium acetobutylicum chromosome. Microbiology 140:89–95 [CrossRef]
    [Google Scholar]
  62. Williams D. R., Young D. I., Oultram J. D., Minton N. P., Young M. 1990a; Development and optimization of conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum NCIB 8052. In Clinical and Molecular Aspects of Anaerobes pp. 239–246Edited by Boriello S. P. Petersfield, UK: Wrightson Biomedical;
    [Google Scholar]
  63. Williams D. R., Young D. I., Young M. 1990b; Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum. J Gen Microbiol 136:819–826 [CrossRef]
    [Google Scholar]
  64. Woolley R. C., Pennock A., Ashton R. J., Davies A., Young M. 1989; Transfer of Tn1545 and Tn916 to Clostridium acetobutylicum. Plasmid 22:169–174 [CrossRef]
    [Google Scholar]
  65. Young M. 1993a; Development and exploitation of conjugative gene transfer in clostridia. In The Clostridia and Biotechnology pp. 99–117Edited by Woods D. R. Boston: Butterworth-Heinemann;
    [Google Scholar]
  66. Young M. 1993b; Conjugative gene transfer in clostridia. In Genetics and Molecular Biology of Anaerobic Bacteria pp. 98–110Edited by Sebald M. New York: Springer;
    [Google Scholar]
  67. Young M., Cole S. T. 1993; Clostridium. In Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics pp. 35–52Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  68. Young M., Ehrlich S. D. 1989; Stability of reiterated sequences in the Bacillus subtilis chromosome. J Bacteriol 171:2653–2656
    [Google Scholar]
  69. Young D. I., Williams D. R., Young M. 1993; Evidence for transfer of a single DNA strand during IncP-mediated conjugative mobilization of plasmids from E. coli to Gram-positive bacteria. In DNA Transfer and Gene Expression in Micro-organisms pp. 131–135Edited by Balla E., Berencsi G., Szentirmai A. Andover, UK: Intercept;
    [Google Scholar]
  70. Young D. I., Evans V. J., Jefferies J. R., Jennert K. C. B., Phillips Z. E. V., Ravagnani A., Young M. 1999; Genetic methods in clostridia. Methods Microbiol 29:191–207
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-12-3071
Loading
/content/journal/micro/10.1099/00221287-146-12-3071
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error