1887

Abstract

The insertion sequence IS is linked to the regions of both O1 and O139, and its location was suggestive of a role in generating new combinations of genes. This provoked an examination of the distribution and localization of IS in . IS was widely distributed in a number of serogroups. In particular, when cosmid clones of O1 were screened with IS and subsequently subcloned and sequenced, it was found that like genes were linked to this region. Furthermore, when the previously identified genes and from O1, now known to be involved in LPS biosynthesis, were used as probes, it was discovered that they too are present on the same large RI fragment as IS. This clearly indicated that IS was linked to the region of O1. Further analysis of the location of IS in other serotypes indicated that O2 also has IS associated with -like genes. In O2 there is more than one copy of IS, suggesting that this element is a site for recombination, gene duplication or that it may be capable of transposition. Following this latter premise, IS elements from a variety of strains have been cloned and sequenced. Only those strains with multiple copies of IS produce a full-length putative transposase, as shown by protein overexpression, further strengthening the argument that the element is transposing within these strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-2-323
2000-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/2/1460323a.html?itemId=/content/journal/micro/10.1099/00221287-146-2-323&mimeType=html&fmt=ahah

References

  1. Allen A., Maskell D. 1996; The identification, cloning and mutagenesis of a genetic locus required for lipopolysaccharide biosynthesis in Bordetella pertussis. Mol Microbiol 19:37–52 [CrossRef]
    [Google Scholar]
  2. Amor P. A., Mutharia L. M. 1995; Cloning and expression of rfb genes from Vibrio anguillarum serotype O2 in Escherichia coli: evidence for cross-reactive epitopes. Infect Immun 63:3537–3542
    [Google Scholar]
  3. Becker A., Niehaus K., Puhler A. 1995; Low molecular-weight succinoglycan is predominantly produced by Rhizobium meliloti strains carrying a mutated ExoP protein characterised by a periplasmic N-terminal domain and a missing C-terminal domain. Mol Microbiol 16:191–203 [CrossRef]
    [Google Scholar]
  4. Bik E. M., Bunschoten A. E., Gouw R. D., Mooi F. R. 1995; Genesis of the novel epidemic Vibrio cholerae O139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J 14:209–216
    [Google Scholar]
  5. Bik E. M., Bunschoten A. E., Willems R. J. L., Chang A. C. Y., Mooi F. R. 1996; Genetic organization and functional analysis of the otn DNA essential for cell-wall polysaccharide synthesis in Vibrio cholerae O139. Mol Microbiol 20:799–811 [CrossRef]
    [Google Scholar]
  6. Comstock L. E., Johnson J. A., Michalski J. M., Morris J. G. Jr, Kaper J. B. 1996; Cloning and sequencing of a region encoding a surface polysaccharide of Vibrio cholerae O139 and characterisation of the insertion site in the chromosome of Vibrio cholerae O1. Mol Microbiol 19:815–826 [CrossRef]
    [Google Scholar]
  7. Gustafson C. E., Chun S., Trust T. J. 1994; Mutagenesis of the paracrystalline surface protein array of Aeromonas salmonicida by endogenous insertion sequence. J Mol Biol 237:452–463 [CrossRef]
    [Google Scholar]
  8. Hashimoto Y., Li N., Yokoyama H., Ezaki T. 1993; Complete nucleotide sequence and molecular characterisation of ViaB region encoding Vi antigen in Salmonella typhi. J Bacteriol 175:4456–4465
    [Google Scholar]
  9. Hobbs M., Reeves P. R. 1994; The JUMPstart sequence: a 39 bp element common to several polysaccharide gene clusters. Mol Microbiol 12:855–856 [CrossRef]
    [Google Scholar]
  10. Johnson J. A., Salles C. A., Panigrahi P., Albert M. J., Wright A. C., Johnson R. J., Morris J. G. Jr 1994; Vibrio cholerae O139 synonym Bengal is closely related to Vibrio cholerae El Tor but has important differences. Infect Immun 62:2108–2110
    [Google Scholar]
  11. Mahillon J., Chandler M. 1998; Insertion sequences. Microbiol Mol Biol Rev 62:725–774
    [Google Scholar]
  12. Manning P. A., Heuzenroeder M. W., Yeadon J., Leavesley D. I., Reeves P. R., Rowley D. 1986; Molecular cloning and expression in Escherichia coli K-12 of the O-antigen of the Ogawa and Inaba serotypes of the lipopolysaccharide of Vibrio cholerae O1 and their potential for vaccine development. Infect Immun 53:272–277
    [Google Scholar]
  13. Manning P. A., Stroher U. H., Karageorgos L. E., Morona R. 1995; Putative O-antigen transport genes within the rfb region of Vibrio cholerae O1 are homologous to those of capsule transport. Gene 158:1–7 [CrossRef]
    [Google Scholar]
  14. Morona R., Brown M. H., Yeadon J., Heuzenroeder M. W., Manning P. A. 1991; Effects of lipopolysaccharide core biosynthesis mutations on the production of Vibrio cholerae O-antigen in Escherichia coli K-12. FEMS Microbiol Lett 66:279–286
    [Google Scholar]
  15. Morona R., Stroeher U. H., Karageorgos L. E., Brown M. H., Manning P. A. 1995a; A putative pathway for biosynthesis of the O-antigen component, 3-deoxy-l-glycero-tetronic acid, based on the sequence of the Vibrio cholerae O1 rfb region. Gene 166:19–31 [CrossRef]
    [Google Scholar]
  16. Morona R., Van Den Bosch L., Manning P. A. 1995b; Molecular, genetic, and topological characterisation of O-antigen chain length regulation in Shigella flexneri. J Bacteriol 177:1059–1068
    [Google Scholar]
  17. Norqvist A., Wolf-Watz H. 1993; Characterisation of a novel chromosomal virulence locus involved in expression of a major surface flagellar sheath antigen of the fish pathogen Vibrio anguillarum. Infect Immun 61:2434–2444
    [Google Scholar]
  18. Ochman H., Gerber A. S., Hartl D. L. 1988; Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–625
    [Google Scholar]
  19. Okada N., Sasakawa C., Tobe T., Talukder K. A., Komatsu K., Yoshikawa M. 1991a; Construction of a physical map of the chromosome of Shigella flexneri 2a and the direct assignment of nine virulence-associated loci identified by Tn5 insertions. Mol Microbiol 5:2171–2180 [CrossRef]
    [Google Scholar]
  20. Okada N., Sasakawa C., Tobe T., Yamada M., Nagai S., Talukder K. A., Komatsu K., Kanegasaki S., Yoshikawa M. 1991b; Virulence associated chromosomal loci of Shigella flexneri identified by random Tn5 insertion mutagenesis. Mol Microbiol 5:187–195 [CrossRef]
    [Google Scholar]
  21. Phalipon A., Kaufmann M., Michetti P., Cavaillon J. M., Huerre M., Sansonetti P., Kraehenbuhl J. P. 1995; Monoclonal immunoglobulin A antibody directed against serotype-specific epitope of Shigella flexneri lipopolysaccharide protects against murine experimental shigellosis. J Exp Med 182:769–778 [CrossRef]
    [Google Scholar]
  22. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Sharma D. P., Stroeher U. H., Thomas C. J., Manning P. A., Attridge S. R. 1989; The toxin coregulated pilus (TCP) of Vibrio cholerae: molecular cloning of genes involved in pilus biosynthesis and evaluation of TCP as a protective antigen in the infant mouse model. Microb Pathog 7:437–448 [CrossRef]
    [Google Scholar]
  24. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517 [CrossRef]
    [Google Scholar]
  25. Stroeher U. H., Karageorgos L. E., Morona R., Manning P. A. 1992; Serotype conversion in Vibrio cholerae O1. Proc Natl Acad Sci USA 89:2566–2570 [CrossRef]
    [Google Scholar]
  26. Stroeher U. H., Lech A. J., Manning P. A. 1994; Gene sequence of recA + and construction of recA mutants of Vibrio cholerae. Mol Gen Genet 244:295–302
    [Google Scholar]
  27. Stroeher U. H., Jedani K. E., Dredge B. K., Morona R., Brown M. H., Karageorgos L. E., Albert J. M., Manning P. A. 1995a; Genetic rearrangement of the rfb regions of Vibrio cholerae O1 and O139. Proc Natl Acad Sci USA 92:10374–10378 [CrossRef]
    [Google Scholar]
  28. Stroeher U. H., Karageorgos L. E., Morona R., Manning P. A. 1995b; In Vibrio cholerae serotype O1, rfaD is closely linked to the rfb operon. Gene 155:67–72 [CrossRef]
    [Google Scholar]
  29. Tabor S., Richardson C. C. 1985; A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 82:1074–1078 [CrossRef]
    [Google Scholar]
  30. Van den Bosch L., Manning P. A., Morona R. 1997; Regulation of O-antigen chain length is required for Shigella flexneri virulence. Mol Microbiol 23:765–775 [CrossRef]
    [Google Scholar]
  31. Waxin H., Virlogeux I., Kolyua S., Popoff M. Y. 1993; Identification of six open reading frames in the Salmonella enterica subsp. enterica ser. Typhi viaB locus involved in Vi antigen production. Res Microbiol 144:363–371 [CrossRef]
    [Google Scholar]
  32. Xiang S.-H., Hobbs M., Reeves P. R. 1994; Molecular analysis of the rfb gene cluster of a group D2 Salmonella enterica strain: evidence for its origin from an insertion sequence mediated recombination event between group E and D1 strains. J Bacteriol 175:4357–4365
    [Google Scholar]
  33. Yother J., Ambrose K. D., Caimano M. J. 1997; Association of a partial H-rpt element with the type 3 capsule locus of Streptococcus pneumoniae. Mol Microbiol 25:201–204 [CrossRef]
    [Google Scholar]
  34. Zhang L., Radziejewska-Lebrecht J., Krajewska-Pietrasik D., Toivanen P., Skurnik M. 1997; Molecular and chemical characterisation of the lipopolysaccharide O-antigen and its role in the virulence of Yersinia enterocolitica serotype O:8. Mol Microbiol 23:63–76 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-2-323
Loading
/content/journal/micro/10.1099/00221287-146-2-323
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error