1887

Abstract

Degenerate oligonucleotide primers based on internal peptide sequences obtained by HPLC from purified catalase were used to locate the and subsp. regions by PCR. Southern hybridization analysis with a probe derived from a 11 kb PCR-amplified fragment showed that a single copy of the putative catalase gene was present in the and subsp. chromosome. The nucleotide sequence of revealed a 1518 bp open reading frame for a protein with 505 amino acids and a predicted molecular mass of 58347 Da, whereas subsp. is 1368 nt long and encodes a polypeptide of 455 amino acids with a predicted molecular mass of 52584 Da. These catalases are highly homologous to typical monofunctional catalases from prokaryotes. The active-site residues, proximal and distal haem-binding ligands and NADPH-binding residues of the bovine liver catalase-type enzyme were highly conserved in KatA. cells carrying cloned had a catalase activity approximately 1000 times that of untransformed , but no detectable increase in catalase activity was observed with carrying cloned . Northern blotting showed the presence of a -specific transcript in subsp. , suggesting that the lack of catalase activity in this bacterium is due to a post-transcriptional alteration. Compared to the nucleotide sequence of , showed a single base-pair deletion and six mis-sense mutations, and these alterations were present in three other subsp. strains analysed. The deletion, located at 1338 bp from the initiation codon, originates a shift of the nucleotide reading frame and is responsible for the premature translation termination at 1368 bp, generating a KatB polypeptide 50 amino acid residues shorter than KatA. Moreover, four of the mis-sense mutations present in lead to non-conservative amino acid replacements, the most significant being that located at residue 317 (Pro in KatA→Ser in KatB) because the affected amino acid is involved in determining the proximal haem-binding site. Both the main alterations found in KatB (the deletion and the substitution in residue 317) seem to contribute to the lack of catalase activity in subsp. , as deduced from results obtained with chimeric catalase constructs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-2-465
2000-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/2/1460465a.html?itemId=/content/journal/micro/10.1099/00221287-146-2-465&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1991 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  2. Clare D. A., Duong M. N., Darr D., Archibald F., Fridovich I. 1984; Effects of molecular oxygen on detection of superoxide radical with nitroblue tetrazolium and on activity stains for catalase. Anal Biochem 140:532–537 [CrossRef]
    [Google Scholar]
  3. De la Fuente R., Suarez G. 1985; Respiratory deficient Staphylococcus aureus as the aetiological agent of ‘abscess disease’. Zentbl Vet Med B 32:397–406
    [Google Scholar]
  4. De la Fuente R., Suarez G., Schleifer K. H. 1985; Staphylococcus aureus subsp. anaerobius subsp. nov., the causal agent of abscess disease of sheep. Int J Syst Bacteriol 35:99–102 [CrossRef]
    [Google Scholar]
  5. De la Fuente R., Götz F., Shleifer K. H. 1987; Comparative biochemical studies on aerobic mutants of Staphylococcus aureus subsp. anaerobius. Syst Appl Microbiol 9:29–33 [CrossRef]
    [Google Scholar]
  6. De la Fuente R., Ruiz Santa Quiteria J. A., Cid D., Domingo M., Suarez G. 1993; Experimental intramammary infection of ewes with Staphylococcus aureus subsp anaerobius. Res Vet Sci 54:221–226 [CrossRef]
    [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395 [CrossRef]
    [Google Scholar]
  8. Fita I., Rossmann M. G. 1985a; Tha NADPH binding site on beef liver catalase. Proc Natl Acad Sci USA 82:1604–1608 [CrossRef]
    [Google Scholar]
  9. Fita I., Rossmann M. G. 1985b; The active center of catalase. J Mol Biol 185:21–37 [CrossRef]
    [Google Scholar]
  10. Gouet P., Jouve H. M., Dideberg O. 1995; Crystal structure of Proteus mirabilis PR catalase with and without bound NADPH. J Mol Biol 249:933–954 [CrossRef]
    [Google Scholar]
  11. Haas A., Brehm K. 1993; Superoxide dismutases and catalases: biochemistry, molecular biology and some biomedical aspects. Genet Eng Biotechnol 13:243–269
    [Google Scholar]
  12. Higuchi R. 1989; Using PCR to engineer DNA. In PCR Technology. Principles and Applications for DNA Amplification pp. 61–70Edited by Erlich H. A. New York: Macmillan;
    [Google Scholar]
  13. Horwitz M. S. Z., Loeb L. A. 1990; Structure–function relationship in Escherichia coli promoter DNA. Prog Nucleic Acid Res Mol Biol 38:137–164
    [Google Scholar]
  14. Kanafani H., Martin S. E. 1985; Catalase and superoxide dismutase activities in virulent and nonvirulent Staphylococcus aureus isolates. J Clin Microbiol 21:607–610
    [Google Scholar]
  15. Klotz M. G., Klassen G. R., Loewen P. C. 1997; Phylogenetic relationships among prokaryotic and eukaryotic catalases. Mol Biol Evol 14:951–958 [CrossRef]
    [Google Scholar]
  16. Kornblum J. S., Projan S. J., Moghazeh S. L., Novick R. P. 1988; A rapid method to quantitate nonlabeled RNA species in bacterial cells. Gene 63:75–85 [CrossRef]
    [Google Scholar]
  17. Loewen P. C. 1992; Regulation of bacterial catalase synthesis. In Molecular Biology of Free Radical Scavenging Systems pp. 96–116Edited by Scandalios J. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Mandell G. L. 1975; Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. In vivo and in vitro studies with emphasis on staphylococcal–leucocyte interaction. J Clin Invest 55:561–566 [CrossRef]
    [Google Scholar]
  19. Melik-Adamyan W. R., Barynin V. V., Vagin A. A., Borisov V. V., Vainshtein B. K., Fita I., Murthy M. R. N., Rossmann M. G. 1986; Comparison of beef liver and Penicillium vitale catalases. J Mol Biol 188:63–72 [CrossRef]
    [Google Scholar]
  20. Murthy M. R. N., Reid T. J. III, Sicignano A., Tanaka N., Rossmann M. G. 1981; Structure of beef liver catalase. J Mol Biol 152:465–499 [CrossRef]
    [Google Scholar]
  21. Rocha E. R., Smith C. J. 1995; Biochemical and genetic analyses of a catalase from the anaerobic bacterium Bacteroides fragilis. J Bacteriol 177:3111–3119
    [Google Scholar]
  22. Ruiz Santa Quiteria J. A., Cid D., Bellahsene R., Suarez G., De la Fuente R. 1992; Polyclonal antibodies against Staphylococcus aureus ATCC 12600 catalase do not recognize any protein in cellular extracts from S. aureus subsp. anaerobius. FEMS Microbiol Lett 72:173–176
    [Google Scholar]
  23. Rupprecht M., Schleifer K. H. 1979; A comparative immunological study of catalases from coagulase-positive staphylococci. Arch Microbiol 120:53–56 [CrossRef]
    [Google Scholar]
  24. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  26. Sinha A. K. 1972; Colorimetric assay of catalase. Anal Biochem 47:389–394 [CrossRef]
    [Google Scholar]
  27. Switala J., Triggs-Raine B. L., Loewen P. C. 1990; Homology among bacterial catalase genes. Can J Microbiol 36:728–731 [CrossRef]
    [Google Scholar]
  28. Timoney J. F., Gillespie J. H., Scott F. W., Baslough J. E. 1988; The staphylococci. In Hagan and Bruner’s Microbiology and Infectious Diseases of Domestic Animals, 8th edn. pp. 171–180 Ithaca & London: Comstock Publishing;
    [Google Scholar]
  29. Vandenesch F., Lebeau C., Bes M., McDevitt D., Greenland T., Novick R. P., Etienne J. 1994; Coagulase deficiency in clinical isolates of Staphylococcus aureus involves both transcriptional and post-transcriptional defects. J Med Microbiol 40:344–349 [CrossRef]
    [Google Scholar]
  30. Von Ossowski I., Hausner G., Loewen P. C. 1993; Molecular evolutionary analysis based on the amino acid sequence of catalase. J Mol Evol 37:71–76 [CrossRef]
    [Google Scholar]
  31. Wada K., Wada Y., Ishibashi F., Gojobori T., Ikemura T. 1992; Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res 20:2111–2118 [CrossRef]
    [Google Scholar]
  32. Watson D. L. 1988; Vaccination againts experimental staphylococcal mastitis in ewes. Res Vet Sci 45:16–21
    [Google Scholar]
  33. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13, mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-2-465
Loading
/content/journal/micro/10.1099/00221287-146-2-465
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error