1887

Abstract

Erythritol utilization is a characteristic of pathogenic strains. The attenuated vaccine strain B19 is the only strain that is inhibited by erythritol, so a role for erythritol metabolism in virulence is suspected. A chromosomal fragment from the pathogenic strain 2308 containing genes for the utilization of erythritol was cloned taking advantage of an erythritol-sensitive Tn insertion mutant. The nucleotide sequence of the complete 7714 bp fragment was determined. Four ORFs were identified in the sequence. The four genes were closely spaced, suggesting that they were organized as a single operon (the operon). The first gene () encoded a 519 aa putative erythritol kinase. The second gene () encoded an erythritol phosphate dehydrogenase. The function of the third gene () product was tentatively assigned as D-erythrulose-1-phosphate dehydrogenase and the fourth gene () encoded a regulator of operon expression. The operon promoter was located 5′ to , and contained an IHF (integration host factor) binding site. Transcription from this promoter was repressed by EryD, and stimulated by erythritol. Functional IHF was required for expression of the operon in , suggesting a role for IHF in its regulation in . The results obtained will be helpful in clarifying the role of erythritol metabolism in the virulence of spp.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-2-487
2000-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/2/1460487a.html?itemId=/content/journal/micro/10.1099/00221287-146-2-487&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Anderson J. D., Smith H. 1965; The metabolism of erythritol in Brucella abortus. J Gen Microbiol 38:109–124 [CrossRef]
    [Google Scholar]
  3. Bagdasarian M., Lurz R., Ruckert B., Franklin F. C., Bagdasarian M. M., Frey J., Timmis K. N. 1981; Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF 1010-derived vectors, and a host–vector system for gene cloning in Pseudomonas. Gene 16:237–247 [CrossRef]
    [Google Scholar]
  4. Craig N. L., Nash H. A. 1984; E. coli integration host factor binds to specific sites in DNA. Cell 39:707–716 [CrossRef]
    [Google Scholar]
  5. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395 [CrossRef]
    [Google Scholar]
  6. Dodd I. B., Egan J. B. 1990; Improved detection of helix–turn–helix DNA-binding motifs in protein sequences. Nucleic Acids Res 18:5019–5026 [CrossRef]
    [Google Scholar]
  7. Dower W. J., Miller J. F., Ragsdale C. W. 1988; High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145 [CrossRef]
    [Google Scholar]
  8. Gamas P., Burger A. C., Churchward G., Caro L., Galas D., Chandler M. 1986; Replication of pSC101: effects of mutations in the E. coli DNA binding protein IHF. Mol Gen Genet 204:85–89 [CrossRef]
    [Google Scholar]
  9. Garrido T., Sanchez M., Palacios P., Aldea M., Vicente M. 1993; Transcription of ftsZ oscillates during the cell cycle of Escherichia coli. EMBO J 12:3957–3965
    [Google Scholar]
  10. Heller K. B., Lin E. C., Wilson T. H. 1980; Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli. J Bacteriol 144:274–278
    [Google Scholar]
  11. Heuel H., Shakeri-Garakani A., Turgut S., Lengeler J. W. 1998; Genes for d-arabinitol and ribitol catabolism from Klebsiella pneumoniae. Microbiology 144:1631–1639 [CrossRef]
    [Google Scholar]
  12. Kokotek W., Lotz W. 1991; Construction of a mobilizable cloning vector for site-directed mutagenesis of gram-negative bacteria: application to Rhizobium leguminosarum. Gene 98:7–13 [CrossRef]
    [Google Scholar]
  13. Meyer M. E. 1966; Metabolic characterisation of the genus Brucella. V. Relationship of strain oxidation rate of i-erythritol to strain virulence for guinea pigs. J Bacteriol 92:584–588
    [Google Scholar]
  14. Meyer M. E. 1967; Metabolic characterisation of the genus Brucella. VI. Growth stimulation by i-erythritol compared with strain virulence for guinea pigs. J Bacteriol 93:996–1000
    [Google Scholar]
  15. Perez-Martin J., Rojo F., de Lorenzo V. 1994; Promoters responsive to DNA bending: a common theme in prokaryotic gene expression. Microbiol Rev 58:268–290
    [Google Scholar]
  16. Reizer A., Deutscher J., Saier M. H. Jr, Reizer J. 1991; Analysis of the gluconate (gnt) operon of Bacillus subtilis. Mol Microbiol 5:1081–1089 [CrossRef]
    [Google Scholar]
  17. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Sangari F., Agüero J. 1991; Mutagenesis of Brucella abortus: comparative efficiency of three transposon delivery systems. Microb Pathog 11:443–446 [CrossRef]
    [Google Scholar]
  19. Sangari F. J., Agüero J. 1994; Identification of Brucella abortus B19 vaccine strain by the detection of DNA polymorphism at the ery locus. Vaccine 12:435–438 [CrossRef]
    [Google Scholar]
  20. Sangari F. J., Garcı́a-Lobo J. M., Agüero J. 1994; The Brucella abortus vaccine strain B19 carries a deletion in the erythritol catabolic genes. FEMS Microbiol Lett 121:337–342 [CrossRef]
    [Google Scholar]
  21. Sangari F. J., Agüero J., Garcı́a-Lobo J. M. 1996; Improvement of the Brucella abortus B19 vaccine by its preparation in a glycerol based medium. Vaccine 14:274–276 [CrossRef]
    [Google Scholar]
  22. Sangari F. J., Grillo M. J., Jiménez De Bagüés M. P., González-Carreró M. I., Garcı́a-Lobo J. M., Blasco J. M., Agüero J. 1998; The defect in the metabolism of erythritol of the Brucella abortus B 19 vaccine strain is unrelated with its attenuated virulence in mice. Vaccine 16:1640–1645 [CrossRef]
    [Google Scholar]
  23. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  24. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering, transposon mutagenesis in gram negative bacteria. Bio/Technology 1:784–791 [CrossRef]
    [Google Scholar]
  25. Smith H., Williams A. E., Pearce J. H., Keppie J., Harris-Smith P. W., Fitzgeorge R. B., Witt K. 1962; Foetal erythritol: a cause of the localisation of Brucella abortus in bovine contagious abortion. Nature 193:4749
    [Google Scholar]
  26. Sperry J. F., Robertson D. C. 1975a; Erythritol catabolism by Brucella abortus. J Bacteriol 121:619–630
    [Google Scholar]
  27. Sperry J. F., Robertson D. C. 1975b; Inhibition of growth by erythritol catabolism in Brucella abortus. J Bacteriol 124:391–397
    [Google Scholar]
  28. Ubben D., Schmitt R. 1986; Tn1721 derivatives for transposon mutagenesis, restriction mapping and nucleotide sequence analysis. Gene 41:145–152 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-2-487
Loading
/content/journal/micro/10.1099/00221287-146-2-487
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error