1887

Abstract

The plasmid pJHCMW1 encodes resistance to several aminoglycosides and β-lactams and consists of a copy of the transposon Tn, a region including the replication functions, and a sequence with homology to ColE1 , designated . In this work, the role of this -like site in ensuring the stable inheritance of pJHCMW1 by multimer resolution was studied. The Xer site-specific recombination system acts at sites such as ColE1 to resolve plasmid multimers formed by homologous recombination, thereby maintaining plasmids in a monomeric state and helping to ensure stable plasmid inheritance. Despite its high similarity to ColE1 , the pJHCMW1 was a poor substrate for Xer recombination in and did not contribute significantly to plasmid stability. Instead, the Tn co-integrate resolution system was highly active at resolving pJHCMW1 multimers and ensured the stable inheritance of pJHCMW1. Although Xer recombination at pJHCMW1 was inefficient in , the recombination that did occur was dependent on ArgR, PepA, XerC and XerD. A supercoiled circular DNA molecule containing two pJHCMW1 sites in direct repeat yielded Holliday-junction-containing product when incubated with ArgR, PepA, XerC and XerD , confirming that pJHCMW1 is a functional recombination site. However, unlike , some Holliday-junction-containing product could be detected for in the absence of ArgR, although addition of this protein resulted in formation of more Holliday junctions. Binding experiments demonstrated that XerD bound to pJHCMW1 core with a high affinity, but that XerC bound to this site very poorly, even in the presence of XerD.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-3-581
2000-03-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/3/1460581a.html?itemId=/content/journal/micro/10.1099/00221287-146-3-581&mimeType=html&fmt=ahah

References

  1. Blakely G., Colloms S., May G., Burke M., Sherratt D. 1991; Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New Biol 3:789–798
    [Google Scholar]
  2. Blakely G., May G., McCulloch R., Arciszewska L. K., Burke M., Lovett S. T., Sherratt D. J. 1993; Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell 75:351–361 [CrossRef]
    [Google Scholar]
  3. Cohen S. N., Chang A. C., Hsu L. 1972; Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci USA 69:2110–2114 [CrossRef]
    [Google Scholar]
  4. Colloms S. D., Sykora P., Szatmari G., Sherratt D. J. 1990; Recombination at ColE1 cer requires the Escherichia coli xerC gene product, a member of the lambda integrase family of site-specific recombinases. J Bacteriol 172:6973–6980
    [Google Scholar]
  5. Colloms S. D., McCulloch R., Grant K., Neilson L., Sherratt D. J. 1996; Xer-mediated site-specific recombination in vitro. EMBO J 15:1172–1181
    [Google Scholar]
  6. Colloms S. D., Alen C., Sherratt D. J. 1998; The ArcA/ArcB two-component regulatory system of Escherichia coli is essential for Xer site-specific recombination at psi. Mol Microbiol 28:521–530 [CrossRef]
    [Google Scholar]
  7. Cornet F., Mortier I., Patte J., Louarn J. 1994; Plasmid pSC101 harbors a recombination site, psi, which is able to resolve plasmid multimers and to substitute for the analogous chromosomal Escherichia coli site dif. J Bacteriol 176:3188–3195
    [Google Scholar]
  8. Dery K. J., Chavideh R., Waters V., Chamorro R., Tolmasky L. S., Tolmasky M. E. 1997; Characterization of the replication and mobilization regions of the multiresistance Klebsiella pneumoniae plasmid pJHCMW1. Plasmid 38:97–105 [CrossRef]
    [Google Scholar]
  9. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395 [CrossRef]
    [Google Scholar]
  10. Glansdorff B. 1996; Biosynthesis of arginine and polyamines. In Escherichia coli and Salmonella pp. 408–433 Edited by Neidhardt F. others Washington DC: American Society for Microbiology;
    [Google Scholar]
  11. Helinski D., Toukdarian A., Novick R. 1996; Replication control and other stable maintenance mechanisms of plasmids. In Escherichia coli and Salmonella pp. 2295–2324 Edited by Neidhardt F. others Washington DC: American Society for Microbiology;
    [Google Scholar]
  12. Hiraga S. 1992; Chromosome and plasmid partition in Escherichia coli. Annu Rev Biochem 61:283–306 [CrossRef]
    [Google Scholar]
  13. Jensen R. B., Gerdes K. 1995; Programmed cell death in bacteria: proteic plasmid stabilization systems. Mol Microbiol 17:205–210 [CrossRef]
    [Google Scholar]
  14. Kuempel P., Henson J., Dircks L., Tecklenburg M., Lim D. 1991; dif, a recA-independent recombination site in the terminus region of the chromosome of Escherichia coli. New Biol 3:799–811
    [Google Scholar]
  15. McCulloch R., Coggins L. W., Colloms S. D., Sherratt D. J. 1994; Xer-mediated site-specific recombination at cer generates Holliday junctions in vivo. EMBO J 13:1844–1855
    [Google Scholar]
  16. Nordstrom K., Austin S. J. 1989; Mechanisms that contribute to the stable segregation of plasmids. Annu Rev Genet 23:37–69 [CrossRef]
    [Google Scholar]
  17. Polisky B. 1988; ColE1 replication control circuitry: sense from antisense. Cell 55:929–932 [CrossRef]
    [Google Scholar]
  18. Sambrook J., Fritsch E., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Sherratt D., Blakely G., Burke G., Colloms S., Leslie N., McCulloch R., May G., Roberts J. 1993; Site-specific recombination and the partition of circular chromosomes. In The Chromosome pp. 25–41Edited by Heslop-Harrison J., Flavell R. Oxford: Bios Scientific Publishers;
    [Google Scholar]
  20. Sherratt D. J., Arciszewska L. K., Blakely G., Colloms S., Grant K., Leslie N., McCulloch R. 1995; Site-specific recombination and circular chromosome segregation. Philos Trans R Soc Lond B Biol Sci 347:37–42 [CrossRef]
    [Google Scholar]
  21. Stirling C. J., Szatmari G., Stewart G., Smith M. C., Sherratt D. J. 1988; The arginine repressor is essential for plasmid-stabilizing site-specific recombination at the ColE1 cer locus. EMBO J 7:4389–4395
    [Google Scholar]
  22. Stirling C. J., Colloms S. D., Collins J. F., Szatmari G., Sherratt D. J. 1989; xerB, an Escherichia coli gene required for plasmid ColE1 site-specific recombination, is identical to pepA, encoding aminopeptidase A, a protein with substantial similarity to bovine lens leucine aminopeptidase. EMBO J 8:1623–1627
    [Google Scholar]
  23. Summers D. K. 1989; Derivatives of ColE1 cer show altered topological specificity in site-specific recombination. EMBO J 8:309–315
    [Google Scholar]
  24. Summers D. K. 1994; The origins and consequences of genetic instability in prokaryotes. Dev Biol Stand 83:7–11
    [Google Scholar]
  25. Summers D. K., Sherratt D. J. 1984; Multimerization of high copy number plasmids causes instability: ColIE1 encodes a determinant essential for plasmid monomerization and stability. Cell 36:1097–1103 [CrossRef]
    [Google Scholar]
  26. Summers D. K., Sherratt D. J. 1988; Resolution of ColE1 dimers requires a DNA sequence implicated in the three-dimensional organization of the cer site. EMBO J 7:851–858
    [Google Scholar]
  27. Summers D. K., Beton C. W., Withers H. L. 1993; Multicopy plasmid instability: the dimer catastrophe hypothesis. Mol Microbiol 8:1031–1038 [CrossRef]
    [Google Scholar]
  28. Tolmasky M. E. 1990; Sequencing and expression of aadA, bla, and tnpR from the multiresistance transposon Tn1331. Plasmid 24:218–226 [CrossRef]
    [Google Scholar]
  29. Tolmasky M. E., Crosa J. H. 1987; Tn1331, a novel multiresistance transposon encoding resistance to amikacin and ampicillin in Klebsiella pneumoniae. Antimicrob Agents Chemother 31:1955–1960 [CrossRef]
    [Google Scholar]
  30. Tolmasky M. E., Crosa J. H. 1993; Genetic organization of antibiotic resistance genes (aac(6′)-Ib, aadA, and oxa9) in the multiresistance transposon Tn1331. Plasmid 29:31–40 [CrossRef]
    [Google Scholar]
  31. Tolmasky M. E., Roberts M., Woloj M., Crosa J. H. 1986; Molecular cloning of amikacin resistance determinants from a Klebsiella pneumoniae plasmid. Antimicrob Agents Chemother 30:315–320 [CrossRef]
    [Google Scholar]
  32. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268 [CrossRef]
    [Google Scholar]
  33. Wake R. G., Errington J. 1995; Chromosome partitioning in bacteria. Annu Rev Genet 29:41–67 [CrossRef]
    [Google Scholar]
  34. Woloj M., Tolmasky M. E., Roberts M. C., Crosa J. H. 1986; Plasmid-encoded amikacin resistance in multiresistant strains of Klebsiella pneumoniae isolated from neonates with meningitis. Antimicrob Agents Chemother 29:315–319 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-3-581
Loading
/content/journal/micro/10.1099/00221287-146-3-581
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error