1887

Abstract

The genetic elements specifying six putative two-component regulatory systems (2CSs) were identified on the chromosome of MG1363. These 2CSs appear to represent distinct loci, each containing a histidine kinase and response-regulator-encoding gene pair. Transcriptional analysis of the six 2CSs was performed either by generating transcriptional fusions to a reporter gene or by primer extension. Two of the systems appeared to be expressed constitutively at a high level, whilst the remaining four exhibited growth-phase-dependent expression. Insertional mutagenesis established that the two constitutively expressed 2CSs are necessary for normal cell growth and/or survival. Mutational analysis of the remaining four systems revealed that they are implicated in susceptibility to extreme pH, osmotic or oxidative conditions, or the regulation of phosphatase activity in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-4-935
2000-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/4/1460935a.html?itemId=/content/journal/micro/10.1099/00221287-146-4-935&mimeType=html&fmt=ahah

References

  1. Alex L. A., Simon M. J. 1994; Protein histidine kinases and signal transduction in prokaryotes and eukaryotes. Trends Genet 10:133–139 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schafer A. A., Hang J., Hang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Appleby J. L., Parkinson J. S., Bourett R. B. 1996; Signal transduction via the multistep phosphorelay: not necessarily a road less travelled. Cell 86:845–848 [CrossRef]
    [Google Scholar]
  4. Baikalov I., Schroder I., Kaczor-Grzeskowiak M., Grzeskowiak K., Gunsalus R. P., Dickerson R. E. 1996; Structure of the Escherichia coli response regulator NarL. Biochemistry 35:11053–11061 [CrossRef]
    [Google Scholar]
  5. Birnboim H. C., Doly J. 1979; A rapid alkaline lysis procedure for screening recombinant DNA. Nucleic Acids Res 7:1513–1523 [CrossRef]
    [Google Scholar]
  6. Bult C. J., White O., Olsen G. J.38 other authors 1996; Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073 [CrossRef]
    [Google Scholar]
  7. Chang C., Meyerowitz E. M. 1994; Eukaryotes have ‘‘two component’’ signal transducers. Res Microbiol 145:481–486 [CrossRef]
    [Google Scholar]
  8. De Vos W. M., Vos P., de Haards H., Boerrigter I. 1989; Cloning and expression of the Lactococcus lactis subsp. cremoris SK11 gene encoding an extracellular serine proteinase. Gene 85:169–176 [CrossRef]
    [Google Scholar]
  9. Diep D. B., Havarstein L. S., Nissen-Meyer J., Nes I. F. 1994; The gene encoding plantaricin A, a bacteriocin from Lactobacillus plantarum C11 is located on the same transcription unit as an agr-like regulatory system. Appl Environ Microbiol 60:160–166
    [Google Scholar]
  10. Diep D. B., Havarstein L. S., Nes I. F. 1996; Characterization of the locus responsible for bacteriocin production in Lactobacillus plantarum C11. J Bacteriol 178:4472–4483
    [Google Scholar]
  11. Dubnau D. 1991; Genetic competence in Bacillus subtilis. Microbiol Rev 55:395–424
    [Google Scholar]
  12. Egger L. A., Park H., Inouye M. 1997; Signal transduction via the histidyl aspartyl phosphorelay. Genes Cells 2:167–184 [CrossRef]
    [Google Scholar]
  13. Fabret C., Feher V. A., Hoch J. A. 1999; Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J Bacteriol 181:1975–1983
    [Google Scholar]
  14. Gasson M. J. 1983; Plasmid complement of Streptococcus lactis NCDO712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:1–9
    [Google Scholar]
  15. Hoch J. A., Silhavy T. J.editors 1995 Two Component Signal Transduction Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Ishige K., Nagasawa S., Tokishita S., Mizuno T. 1994; A novel device of bacterial signal transducers. EMBO J 13:5195–5202
    [Google Scholar]
  17. Israelsen H., Madsen S. M., Vrang A., Hansen E. B., Johansen E. 1995; Cloning and partial characterization of regulated promoters from Lactococcus lactis TN917-LacZ integrants with the new promoter probe vector, pAK80. Appl Environ Microbiol 61:2540–2547
    [Google Scholar]
  18. Jensen P. R., Hammer K. 1998; Artificial promoters for metabolic optimization. Biotechnol Bioeng 58:192–195
    [Google Scholar]
  19. Khunajakr N., Liu C. Q., Charoenchai P., Dunn N. W. 1999; A plasmid-encoded two-component regulatory system involved in copper-inducible transcription in Lactococcus lactis. Gene 229:229–235 [CrossRef]
    [Google Scholar]
  20. Kuipers O. P., Beerthuyzen M. M., Siezen R. J., de Vos W. M. 1993; Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem 216:281–291 [CrossRef]
    [Google Scholar]
  21. Kuipers O. P., Beerthuyzen M. M., de Ruyter P. G. G., Luesink E. J., de Vos W. M. 1995; Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270:27299–27304 [CrossRef]
    [Google Scholar]
  22. Leenhouts K. J., Kok J., Venema G. 1989; Campbell-like integration of heterologous plasmid DNA into the chromosome of Lactococcus lactis subsp. lactis. Appl Environ Microbiol 55:394–400
    [Google Scholar]
  23. Leenhouts K. J., Kok J., Venema G. 1990; Replacement recombination in Lactococcus lactis subsp. lactis. J Bacteriol 173:4794–4798
    [Google Scholar]
  24. Leloup L., Ehrlich S. D., Zagorec M., Morel-Deville F. 1997; Single crossover integration in the Lactobacillus sake chromosome and insertional inactivation of the pts1 and lacL genes. Appl Environ Microbiol 63:2117–2123
    [Google Scholar]
  25. Loomis W. F., Shaulsky G., Wang N. 1997; Histidine kinases in signal transduction pathways of Eukaryotes. J Cell Sci 110:1141–1145
    [Google Scholar]
  26. Mizuno T. 1998; His-Asp phosphotransfer signal transduction. J Biochem 123:555–563 [CrossRef]
    [Google Scholar]
  27. Mizuno T., Tanaka I. 1997; Structure of the DNA-binding domain of the OmpR family of response regulators. Mol Microbiol 24:665–667 [CrossRef]
    [Google Scholar]
  28. Molenaar D., Hagting A., Alkema H., Driessen A. J. M., Konings W. N. 1993; Characteristics and osmoregulatory roles of uptake systems for proline and glycine betaine in Lactococcus lactis. J Bacteriol 175:5438–5444
    [Google Scholar]
  29. Morel-Deville F., Ehrlich S. D., Morel P. 1997; Identification by PCR of genes encoding multiple response regulators. Microbiology 143:1513–1520 [CrossRef]
    [Google Scholar]
  30. Morel-Deville F., Fauvel F., Morel P. 1998; Two-component signal-transducing systems involved in stress responses and vancomycin susceptibility in Lactobacillus sakei. Microbiology 144:2873–2883 [CrossRef]
    [Google Scholar]
  31. Morfeldt E., Tegmark K., Avidson S. 1996; Transcriptional control of the agr-dependent virulence gene regulator, RNAIII, in Staphylococcus aureus. Mol Microbiol 21:1227–1237 [CrossRef]
    [Google Scholar]
  32. Ochman H., Medhora M., Garza D., Hartl D. L. 1990; Amplification of flanking sequences by inverse PCR. In PCR Methods: a Guide to Methods and Applications pp. 219–227Edited by Innis M. A., Gelfand D. H., Sininsky J. J., White T. J. Boston: Academic Press;
    [Google Scholar]
  33. O’Connell-Motherway M., Fitzgerald G. F., van Sinderen D. 1997; Cloning and sequence analysis of putative histidine protein kinases isolated from Lactococcus lactis MG1363. Appl Environ Microbiol 63:2454–2459
    [Google Scholar]
  34. O’Keeffe T., Hill C., Ross R. P. 1999; Characterization and heterologous expression of the genes encoding enterocin A production, immunity, and regulation in Enterococcus faecium DPC1146. Appl Environ MIicrobiol 65:1506–1515
    [Google Scholar]
  35. O’Sullivan E. 1996 The response of Lactococcus lactis subsp. cremoris 712 to acid stress PhD thesis National University of Ireland;
    [Google Scholar]
  36. Pao G. M., Saier M. H. Jr 1995; Response regulators in bacterial signal transduction systems: selective domain shuffling during evolution. J Mol Evol 40:136–154 [CrossRef]
    [Google Scholar]
  37. Pao G. M., Saier M. H. Jr 1997; Nonplastid eucaryotic response regulators have a monophyletic origin and evolved from their bacterial precursors in parallel with their cognate sensor kinases. J Mol Evol 44:605–613 [CrossRef]
    [Google Scholar]
  38. Parkinson J. S. 1993; Signal transduction schemes in bacteria. Cell 73:857–871 [CrossRef]
    [Google Scholar]
  39. Parkinson J. S., Kofoid E. C. 1992; Communication modules in bacterial signalling proteins. Annu Rev Genet 26:71–112 [CrossRef]
    [Google Scholar]
  40. Pestova E. V., Havarstein L. S., Morrison D. A. 1996; Regulation of competence for genetic transformation in Streptococus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Mol Microbiol 21:853–862 [CrossRef]
    [Google Scholar]
  41. Pujic P., Dervyn R., Sorokin A., Ehrlich S. D. 1998; The kdgRKAT operon of Bacillus subtilis: detection of the transcript and regulation by the kdgR and ccpA genes. Microbiology 144:3111–3118 [CrossRef]
    [Google Scholar]
  42. Quadri L. E. N., Kleerebezem M. M., Kuipers O. P., De Vos W. M., Roy K. L., Vederas J. C., Stiles M. E. 1997; Characterization of a locus from Carnobacterium piscicola LV17B involved in bacteriocin production and immunity: evidence for global inducer-mediated transcriptional regulation. J Bacteriol 179:6163–6171
    [Google Scholar]
  43. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  44. Stock J. B., Ninfa A. J., Stock A. M. 1989; Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53:450–490
    [Google Scholar]
  45. Stock J. B., Stock A. M., Mottonen J. M. 1990; Signal transduction in bacteria. Nature 334:395–400
    [Google Scholar]
  46. Stock J. B., Surette M. G., Levit M., Park P. 1995; Two component signal transduction systems: structure function relationships and mechanisms of catalysis. In Two Component Signal Transduction pp. 25–51Edited by Hoch J. A., Silhavy T. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  47. Terzaghi B. E., Sandine W. E. 1975; Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:307–313
    [Google Scholar]
  48. Van de Guchte M., Kok J., Venema G. 1992; Gene expression in Lactococcus lactis. FEMS Microbiol Rev 8:73–92
    [Google Scholar]
  49. Van der Meer J. R., Polman J., Beerthuyzen M. M., Seizen R. J., Kuipers O. P., de Vos W. M. 1993; Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine proteinase involved in precursor processing and nisR, encoding a regulatory protein involved in nisin biosynthesis. J Bacteriol 175:2578–2588
    [Google Scholar]
  50. Van Rooijen R. J., de Vos W. M. 1990; Molecular cloning, transcriptional analysis, and nucleotide sequence of lacR, a gene encoding the repressor of the lactose phosphotransferase system of Lactococcus lactis. J Biol Chem 265:18499–18503
    [Google Scholar]
  51. Volz K. 1995; Structural and functional conservation in response regulators. In Two Component Signal Transduction pp. 54–64Edited by Hoch J. A., Silhavy T. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-4-935
Loading
/content/journal/micro/10.1099/00221287-146-4-935
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error