1887

Abstract

Era, an essential GTPase, appears to play an important role in the regulation of the cell cycle and protein synthesis of bacteria and mycoplasmas. In this study, native Era, His-tagged Era (His–Era) and glutathione -transferase (GST)-fusion Era (GST–Era) proteins from were expressed and purified. It was shown that the GST–Era and His–Era proteins purified by 1-step affinity column chromatographic methods were associated with RNA and exhibited a higher GTPase activity. However, the native Era protein purified by a 3-step column chromatographic method had a much lower GTPase activity and was not associated with RNA which had been removed during purification. Purified GST–Era protein was shown to be present as a high- and a low-molecular-mass forms. The high-molecular-mass form of GST–Era was associated with RNA and exhibited a much higher GTPase activity. Removal of the RNA associated with GST–Era resulted in a significant reduction in the GTPase activity. The RNA associated with GST–Era was shown to be primarily 16S rRNA. A purified native Era protein preparation, when mixed with total cellular RNA, was found to bind to some of the RNA. The native Era protein isolated directly from the cells of a wild-type strain was also present as a high-molecular-mass form complexed with RNA and RNase treatment converted the high-molecular-mass form into a 32 kDa low-molecular-mass form, a monomer of Era. Furthermore, a C-terminally truncated Era protein, when expressed in , did not bind RNA. Finally, the GTPase activity of the Era protein free of RNA, but not the Era protein associated with the RNA, was stimulated by acetate and3-phosphoglycerate. These carbohydrates, however, failed to activate the GTPase activity of the C-terminally truncated Era protein. Thus, the results of this study establish that the C-terminus of Era is essential for the RNA-binding activity and that the RNA and carbohydrates modulate the GTPase activity of Era possibly through a similar mechanism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-5-1071
2000-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/5/1461071a.html?itemId=/content/journal/micro/10.1099/00221287-146-5-1071&mimeType=html&fmt=ahah

References

  1. Ahnn J., March P. E., Takiff H. E., Inouye M. 1986; A GTP-binding protein of Escherichia coli has homology to yeast RAS proteins. Proc Natl Acad Sci USA 83:8849–8853 [CrossRef]
    [Google Scholar]
  2. Barbacid M. 1987; Ras genes. Annu Rev Biochem 56:779–827 [CrossRef]
    [Google Scholar]
  3. Bourne H. R., Sanders D. A., McCormick F. 1990; The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125–132 [CrossRef]
    [Google Scholar]
  4. Bourne H. R., Sanders D. A., McCormick F. 1991; The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127 [CrossRef]
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  6. Britton R. A., Powell B. S., Court D. L., Lupski J. R. 1997; Characterization of mutations affecting the Escherichia coli essential GTPase Era that suppress two temperature-sensitive dnaG alleles. J Bacteriol 179:4575–4582
    [Google Scholar]
  7. Britton R. A., Powell B. S., Dasgupta S., Sun Q., Margolin W., Lupski J. R., Court D. L. 1998; Cell cycle arrest in Era GTPase mutants: a potential growth rate-regulated checkpoint in Escherichia coli. Mol Microbiol 27:739–750 [CrossRef]
    [Google Scholar]
  8. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequences of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805 [CrossRef]
    [Google Scholar]
  9. Brosius J., Dull T. J., Noller H. F. 1980; Complete nucleotide sequences of a 23S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 77:201–204 [CrossRef]
    [Google Scholar]
  10. Chen S.-M., Takiff H. E., Barber A. H., Dubois G. C., Bardwell J. C. A., Court D. L. 1990; Expression and characterization of RNaseIII and Era proteins: products of the rnc operon of Escherichia coli. J Biol Chem 265:2888–2895
    [Google Scholar]
  11. Chen X., Court D. L., Ji X. 1999; Crystal structure of ERA: a GTPase-dependent cell cycle regulator containing an RNA binding motif. Proc Natl Acad Sci USA 96:8396–8401 [CrossRef]
    [Google Scholar]
  12. Drueckes P., Schinzel R. 1996; Activation of E350A mutant maltodextrin phosphorylase by exogenously added acetate. Protein Eng 9:701–705 [CrossRef]
    [Google Scholar]
  13. Fleischmann R. D., Adams M. D., White O.37 other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512 [CrossRef]
    [Google Scholar]
  14. Fraenkel D. G. 1996; Glycolysis. In Escherichia coli and Salmonella Cellular and Molecular Biology, 2nd edn. pp. 189–198Edited by Neidhardt F. C., Curtiss R. III, Ingraham J. L., Lin E. C. C., Low K. B., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  15. Fraser C. M., Gocayne J. D., White O.26 other authors 1995; The minimal gene complement of Mycoplasma genitalium. Science 270:397–403 [CrossRef]
    [Google Scholar]
  16. Gollop N., March P. E. 1991a; Localization of the membrane binding sites of Era in Escherichia coli. Res Microbiol 142:301–307 [CrossRef]
    [Google Scholar]
  17. Gollop N., March P. E. 1991b; A GTP-binding protein (Era) has an essential role in growth rate and cell cycle control in Escherichia coli. J Bacteriol 173:2265–2270
    [Google Scholar]
  18. Holms H. 1996; Flux analysis and control of the central metabolic pathways in Escherichia coli. FEMS Microbiol Rev 19:85–116 [CrossRef]
    [Google Scholar]
  19. Inada T., Kawakami K., Chen S., Takiff H. E., Court D. L., Nakamura Y. 1989; Temperature-sensitive lethal mutant of Era, a G protein in Escherichia coli. J Bacteriol 171:5017–5024
    [Google Scholar]
  20. Ingram G. C., Simon R., Carpenter R., Coen E. S. 1998; The Antirrhinum ERG gene encodes a protein related to bacterial small GTPases and is required for embryonic viability. Curr Biol 8:1079–1082 [CrossRef]
    [Google Scholar]
  21. Johnstone B. H., Handler A. A., Chao D. K., Nguyen V., Smith M., Ryu S. Y., Simons E. L., Anderson P. E., Simons R. E. 1999; The widely conserved Era G-protein contains an RNA-binding domain required for Era function in vivo. Mol Microbiol 33:1118–1131
    [Google Scholar]
  22. Kawabata S., Terao Y., Andoh T., Hamada S. 1997; Nucleotide sequence and molecular characterization of a gene encoding GTP-binding protein from Streptococcus gordonii. FEMS Microbiol Lett 156:211–216 [CrossRef]
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  24. Lerner C. G., Inouye M. 1991; Pleiotropic changes resulting from depletion of Era, an essential GTP-binding protein in Escherichia coli. Mol Microbiol 5:951–957 [CrossRef]
    [Google Scholar]
  25. Lerner C. G., Sood P., Ahnn J., Inouye M. 1992; Cold-sensitive growth and decreased GTP-hydrolytic activity from substitution of Pro17 for Val in Era, an essential Escherichia coli GTPase. FEMS Microbiol Lett 95:137–142 [CrossRef]
    [Google Scholar]
  26. Lerner C. G., Gulati P. S., Inouye M. 1995; Cold-sensitive conditional mutations in Era, an essential Escherichia coli GTPase, isolated by localized random polymerase chain reaction mutagenesis. FEMS Microbiol Lett 126:291–298 [CrossRef]
    [Google Scholar]
  27. Lin Y. P., Sharer J. D., March P. E. 1994; GTPase-dependent signaling in bacteria: characterization of a membrane-binding site for Era in Escherichia coli. J Bacteriol 176:44–49
    [Google Scholar]
  28. March P. E. 1992; Membrane associated GTPases in bacteria. Mol Microbiol 6:1253–1257 [CrossRef]
    [Google Scholar]
  29. March P. E., Lerner C. G., Ahnn J., Cui X., Inouye M. 1988; The Escherichia coli Ras-like protein (Era) has GTPase activity and is essential for cell growth. Oncogene 2:539–544
    [Google Scholar]
  30. Meier T. I., Peery R. B., Jaskunas S. R., Zhao G. 1999; 16S ribosomal RNA is bound to Era of Streptococcus pneumoniae. J Bacteriol 181:5242–5249
    [Google Scholar]
  31. Nashimoto H. 1993; Non-ribosomal proteins affecting the assembly of ribosomes in Escherichia coli. In The Translational Apparatus pp. 185–195Edited by Nierhaus H. K., Franceschi F., Subramanian A. R., Erdmann V. A., Wittmann-Liebold B. New York: Plenum;
    [Google Scholar]
  32. Nashimoto H., Uchida H. 1985; DNA sequencing of the Escherichia coli ribonuclease III gene and its mutations. Mol Gen Genet 201:25–29 [CrossRef]
    [Google Scholar]
  33. Nashimoto H., Miura A., Saito H., Uchida H. 1985; Suppressors of temperature-sensitive mutations in a ribosomal protein gene, rpsL (S12), of Escherichia coli. Mol Gen Genet 199:381–387 [CrossRef]
    [Google Scholar]
  34. Pillutla C. R., Sharer J. D., Gulati P. S., Wu E., Yamashita Y., Lerner C. G., Inouye M., March P. E. 1995; Cross-species complementation of the indispensable Escherichia coli era gene highlights amino acid regions essential for activity. J Bacteriol 177:2194–2196
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Sato T., Wu J., Kuramitsu H. 1998; The sgp gene modulates responses of Streptococcus mutans: utilization of an antisense RNA strategy to investigate essential gene functions. FEMS Microbiol Lett 159:241–245 [CrossRef]
    [Google Scholar]
  37. Shimamoto T., Inouye M. 1996; Mutational analysis of Era, an essential GTP-binding protein of Escherichia coli. FEMS Microbiol Lett 136:57–62 [CrossRef]
    [Google Scholar]
  38. Siomi H., Matunis M. J., Michael W. M., Dreyfuss G. 1993; The pre-mRNA binding K-protein contains a novel evolutionarily conserved motif. Nucleic Acids Res 21:1193–1198 [CrossRef]
    [Google Scholar]
  39. Takiff H. E., Chen S.-M., Court D. L. 1989; Genetic analysis of the rnc operon of Escherichia coli. J Bacteriol 171:2581–2590
    [Google Scholar]
  40. Wu J., Cho M.-I., Kuramitsu H. K. 1995; Expression, purification, and characterization of a novel G protein, SGP, from Streptococcus mutans. Infect Immun 63:2516–2521
    [Google Scholar]
  41. Yamashita Y., Takehara T., Huramitsu H. K. 1993; Molecular characterization of a Streptococcus mutans mutant altered in environmental stress responses. J Bacteriol 175:6220–6228
    [Google Scholar]
  42. Zhao G., Winkler M. E. 1995; Kinetic limitation and cellular amount of pyridoxine 5′-phosphate oxidase of Escherichia coli K-12. J Bacteriol 177:883–891
    [Google Scholar]
  43. Zhao G., Meier T. I., Peery R. B., Skatrud P. L. 1999; Biochemical and molecular analyses of the C-terminal domain of Era GTPase from Streptococcus pneumoniae. Microbiology 145:791–800 [CrossRef]
    [Google Scholar]
  44. Zuber M., Hoover T. A., Powell B. S., Court D. L. 1990; Analysis of the rnc locus of Coxiella burnetii. Mol Microbiol 14:291–300
    [Google Scholar]
  45. Zuber M., Hoover T. A., Dertzbaugh M. T., Court D. L. 1997; A Francisella tularensis DNA clone complements Escherichia coli defective for the production of Era, an essential Ras-like GTP-binding protein. Gene 189:31–34 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-5-1071
Loading
/content/journal/micro/10.1099/00221287-146-5-1071
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error