1887

Abstract

In this paper an analysis of 175 currently sequenced transport proteins that comprise the amino acid/polyamine/organocation (APC) superfamily is reported. Members of this superfamily fall into 10 well-defined families that are either prokaryote specific, eukaryote specific or ubiquitous. Most of these proteins exhibit 12 probable transmembrane spanners (TMSs), but members of two of these families deviate from this pattern, exhibiting 10 and 14 TMSs. All members of these families are tabulated, their functional properties are reviewed and phylogenetic/sequence analyses define the evolutionary relationships of the proteins to each other. Evidence is presented that the APC superfamily may include two other currently recognized families that exhibit greater degrees of sequence divergence from APC superfamily members than do the proteins of the 10 established families from each other. At least some of the protein members of these two distantly related families exhibit 11 established TMSs. Altogether, the APC superfamily probably includes 12 currently recognized families with members that exhibit exclusive specificity for amino acids and their derivatives but which can possess 10, 11, 12 or 14 TMSs per polypeptide chain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-8-1797
2000-08-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/8/1461797a.html?itemId=/content/journal/micro/10.1099/00221287-146-8-1797&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Bateman A., Birney E., Durbin R., Eddy S. R., Howe K. L., Sonnhammer E. L. 2000; The Pfam protein families database. Nucleic Acids Res 28:263–266 [CrossRef]
    [Google Scholar]
  3. Beckman M. L., Quick M. W. 1998; Neurotransmitter transporters: regulators of function and functional regulation. J Membr Biol 164:1–10 [CrossRef]
    [Google Scholar]
  4. Brechtel C. E., King S. C. 1998; 4-Aminobutyrate (GABA) transporters from the amino acid-polyamine-choline superfamily: substrate specificity and ligand recognition profile of the 4-aminobutyrate permease from Bacillus subtilis. Biochem J 333:565–571
    [Google Scholar]
  5. Brechtel C. E., Hu L., King S. C. 1996; Substrate specificity of the Escherichia coli 4-aminobutyrate carrier encoded by gabP: uptake and counterflow of structurally diverse molecules. J Biol Chem 271:783–788 [CrossRef]
    [Google Scholar]
  6. Claros M. G., von Heijne G. 1994; TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci 10:685–686
    [Google Scholar]
  7. Closs E. I., Albritton L. M., Kim J. W., Cunningham J. M. 1993; Identification of a low affinity, high capacity transporter of cationic amino acids in mouse liver. J Biol Chem 268:7538–7544
    [Google Scholar]
  8. Corfe B. M., Moir A., Popham D., Setlow P. 1994; Analysis of the expression and regulation of the gerB spore germination operon of Bacillus subtilis 168. Microbiology 140:3079–3083 [CrossRef]
    [Google Scholar]
  9. Cosgriff A. J., Pittard A. J. 1997; A topological model for the general aromatic amino-acid permease, AroP, of Escherichia coli. J Bacteriol 179:3317–3323
    [Google Scholar]
  10. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395 [CrossRef]
    [Google Scholar]
  11. Devés R., Boyd C. A. R. 1998; Transporters for cationic amino acids in animal cells: discovery, structure and function. Physiol Rev 78:487–545
    [Google Scholar]
  12. Doolittle R. F. 1986 Of Urfs and Orfs: a Primer on How to Analyze Derived Amino Acid Sequences Mill Valley, CA: University Science Books;
    [Google Scholar]
  13. Ellis J., Carlin A., Steffes C., Wu J., Liu J., Rosen B. P. 1995; Topological analysis of the lysine-specific permease of Escherichia coli. Microbiology 141:1927–1935 [CrossRef]
    [Google Scholar]
  14. Estévez R., Camps M., Rojas A. M., Testar X., Devés R., Hediger M. A., Zorzano A., Palacı́n M. 1998; The amino acid transport system y+L/4F2hc is a heteromultimeric complex. FASEB J 12:1319–1329
    [Google Scholar]
  15. Farcasanu I. C., Mizunuma M., Hirata D., Miyakawa T. 1998; Involvement of histidine permease (Hip1p) in manganese transport in Saccharomyces cerevisiae. Mol Gen Genet 259:541–548 [CrossRef]
    [Google Scholar]
  16. Feng D.-F., Doolittle R. F. 1990; Progressive alignment and phylogenetic tree construction of protein sequences. Methods Enzymol 183:375–387
    [Google Scholar]
  17. Hofmann K., Stoffel W. 1993; TMbase – a database of membrane spanning proteins segments. Biol Chem Hoppe-Seyler 347:166
    [Google Scholar]
  18. Hofmann K., Bucher P., Falquez L., Bairoch A. 1999; The prosite database, its status in 1999. Nucleic Acids Res 27:215–219 [CrossRef]
    [Google Scholar]
  19. Hu L. A., King S. C. 1998a; Membrane topology of the Escherichia coli γ-aminobutyrate transporter: implications on the topology and mechanism of prokaryotic and eukaryotic transporters from the APC superfamily. Biochem J 336:69–76
    [Google Scholar]
  20. Hu L. A., King S. C. 1998b; Functional significance of the ‘signature cysteine’ in helix 8 of the Escherichia coli 4-aminobutyrate transporter from the amino-acid-polyamine-choline superfamily. J Biol Chem 273:20162–20167 [CrossRef]
    [Google Scholar]
  21. Hu L. A., King S. C. 1998c; Functional sensitivity of polar surfaces on transmembrane helix 8 and cytoplasmic loop 8–9 of the Escherichia coli GABA (4-aminobutyrate) transporter encoded by gabP: mutagenic analysis of a consensus amphipathic region found in transporters from bacteria to mammals. Biochem J 330:771–776
    [Google Scholar]
  22. Isnard A. D., Thomas D., Surdin-Kerjan Y. 1996; The study of methionine uptake in Saccharomyces cerevisiae reveals a new family of amino acid permeases. J Mol Biol 262:473–484 [CrossRef]
    [Google Scholar]
  23. Kashiwagi K., Shibuya S., Tomitori H., Kuraishi A., Igaragshi K. 1997; Excretion and uptake of putrescine by the PotE protein in Escherichia coli. J Biol Chem 272:6318–6323 [CrossRef]
    [Google Scholar]
  24. Kim J. W., Closs E. I., Albritton L. M., Cunningham J. M. 1991; Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature 352:725–728 [CrossRef]
    [Google Scholar]
  25. King S. C., Fleming S. R., Brechtel C. E. 1995; Ligand recognition properties of the Escherichia coli 4-aminobutyrate transporter encoded by gabP: specificity of Gab permease for heterocyclic inhibitors. J Biol Chem 270:19893–19897 [CrossRef]
    [Google Scholar]
  26. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132 [CrossRef]
    [Google Scholar]
  27. Markovich D., Stange G., Bertran J., Palacin M., Werner A., Biber J., Murer H. 1993; Two mRNA transcripts (rBAT-1 and rBAT-2) are involved in system b0,+-related amino acid transport. J Biol Chem 268:1362–1367
    [Google Scholar]
  28. Mastroberardino L., Spindler B., Pfeiffer R., Skelly P. J., Loffing J., Shoemaker C. B., Verrey F. 1998; Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 395:288–291 [CrossRef]
    [Google Scholar]
  29. Palacı́n M., Estévez R., Bertran J., Zorzano A. 1998; Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78:969–1054
    [Google Scholar]
  30. Pao S. S., Paulsen I. T., Saier M. H. Jr 1998; The major facilitator superfamily. Microbiol Mol Biol Rev 62:1–32
    [Google Scholar]
  31. Paulsen I. T., Sliwinski M. K., Saier M. H. Jr 1998a; Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities. J Mol Biol 277:573–592 [CrossRef]
    [Google Scholar]
  32. Paulsen I. T., Sliwinski M. K., Nelissen B., Goffeau A., Saier M. H. Jr 1998b; Unified inventory of established and putative transporters encoded within the complete genome of Saccharomyces cerevisiae. FEBS Lett 430:116–125 [CrossRef]
    [Google Scholar]
  33. Reizer J., Finley K., Kakuda D., MacLeod C. L., Reizer A., Saier M. H. Jr 1993; Mammalian integral membrane receptors are homologous to facilitators and antiporters of yeast, fungi, and eubacteria. Protein Sci 2:20–30
    [Google Scholar]
  34. Saier M. H. Jr 1994; Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev 58:71–93
    [Google Scholar]
  35. Saier M. H. Jr 1996; Phylogenetic approaches to the identification and characterization of protein families and superfamilies. Microb Comp Genomics 1:129–150
    [Google Scholar]
  36. Saier M. H. Jr 1998; Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. In Advances in Microbial Physiology pp. 81–136Edited by Poole R. K. San Diego, CA: Academic Press;
    [Google Scholar]
  37. Saier M. H. Jr 1999a; Classification of transmembrane transport systems in living organisms. In Biomembrane Transport pp. 265–276Edited by Van Winkle L. San Diego, CA: Academic Press;
    [Google Scholar]
  38. Saier M. H. Jr 1999b; Eukaryotic transmembrane solute transport systems. In International Review of Cytology: a Survey of Cell Biology pp. 61–136Edited by Jeon K. W. San Diego, CA: Academic Press;
    [Google Scholar]
  39. Saier M. H. Jr 1999c; Genome archeology leading to the characterization and classification of transport proteins. Curr Opin Microbiol 2:555–561 [CrossRef]
    [Google Scholar]
  40. Saier M. H. Jr 2000a; Families of transmembrane transporters selective for amino acids and their derivatives. Microbiology 146:1775–1795
    [Google Scholar]
  41. Saier M. H. Jr 2000b; A functional/phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64:354–411 [CrossRef]
    [Google Scholar]
  42. Saier M. H. Jr, Beatty J. T., Goffeau A.11 other authors 1999a; The major facilitator superfamily. J Mol Microbiol Biotechnol 1:257–279
    [Google Scholar]
  43. Saier M. H. Jr, Eng B. H., Fard S.15 other authors 1999b; Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim Biophys Acta 1422:1–56 [CrossRef]
    [Google Scholar]
  44. Sanders J. W., Leenhouts K., Burghoorn J., Brands J. R., Venema G., Kok J. 1998; A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol Microbiol 27:299–310 [CrossRef]
    [Google Scholar]
  45. Sato H., Tamba M., Ishii T., Bannai S. 1999; Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274:11455–11458 [CrossRef]
    [Google Scholar]
  46. Sophianopoulou V., Diallinas G. 1995; Amino acid transporters of lower eukaryotes: regulation, structure and topogenesis. FEMS Microbiol Rev 16:53–75 [CrossRef]
    [Google Scholar]
  47. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  48. Torrents D., Estévez R., Pineda M., Fernández E., Lloberas J., Shi Y.-B., Zorzano A., Palacı́n M. 1998; Identification and characterization of a membrane protein (y+ l-amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y+ l: a candidate gene for lysinuric protein intolerance. J Biol Chem 273:32437–32445 [CrossRef]
    [Google Scholar]
  49. Verrey F., Jack D. L., Paulsen I. T., Saier M. H. Jr, Pfeiffer R. 1999; New glycoprotein-associated amino acid transporters. J Membr Biol 172:181–192 [CrossRef]
    [Google Scholar]
  50. Von Heijne G. 1992; Membrane protein structure prediction, hydrophobicity analysis and positive-inside rule. J Mol Biol 225:487–494 [CrossRef]
    [Google Scholar]
  51. Wang H., Kavanaugh M. P., North R. A., Kabat D. 1991; Cell-surface receptor for ecotropic murine retroviruses is a basic amino-acid transporter. Nature 352:729–731 [CrossRef]
    [Google Scholar]
  52. Young G. B., Jack D. L., Smith D. W., Saier M. H. Jr 1999; The amino acid/auxin:proton symport permease family. Biochim Biophys Acta 1415:306–322 [CrossRef]
    [Google Scholar]
  53. Zuberi A. R., Moir A., Feavers I. M. 1987; The nucleotide sequence and gene organization of the gerA spore germination operon of Bacillus subtilis 168. Gene 51:1–11 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-8-1797
Loading
/content/journal/micro/10.1099/00221287-146-8-1797
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error