1887

Abstract

The phospholipids of and were characterized by fast atom bombardment (FAB)-MS and GLC-MS. The major phospholipids were phosphatidylethanolamine (PE), followed by phosphatidylglycerol (PG), with minor amounts of phosphatidic acid (PA) and trace levels of cardiolipin (DPG). All of the phospholipid preparations were variable in their fatty acyl substituents, which included C16:1, C16:0, C18:1, C14:0, C14:1 and C12:0. By MS/MS analysis, all pathogenic spp. phospholipids contained a saturated fatty acyl substituent and either a saturated or unsaturated fatty acyl substituent in the and positions, respectively. Compared with enteric bacterial species, the phospholipids of and have increased levels of phospholipids with short-chain fatty acyl residues (i.e. increases in C12:0, C14:1 and C14:0) and variable amounts of C18:1. The percentage of total PE and PG molecules with the shorter-chain fatty acids ranges from 35 to 47% and 42 to 66%, respectively, for while these respective values are <10% and <5% for . The variability and variety of meningococcal and gonococcal phospholipids suggest novel genetic mechanisms of neisserial phospholipid assembly and regulation, which may be important for the biology and pathogenesis of and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-8-1901
2000-08-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/8/1461901a.html?itemId=/content/journal/micro/10.1099/00221287-146-8-1901&mimeType=html&fmt=ahah

References

  1. Brandtzaeg P., Kierulf P., Gaustad P., Skulberg A., Bruun J. N., Halvorsen S., Sorensen E. 1989; Plasma endotoxin as a predictor of multiple organ failure and death in systemic meningococcal disease. J Infect Dis 159:195–203 [CrossRef]
    [Google Scholar]
  2. Cacciapuoti A. F., Wegener W. S., Morse S. A. 1978; Cell envelope of Neisseria gonorrhoeae: phospholipase activity and its relationship to autolysis. Infect Immun 20:418–420
    [Google Scholar]
  3. Cacciapuoti A. F., Wegener W. S., Morse S. A. 1979; Phospholipid metabolism in Neisseria gonorrhoeae: phospholipid hydrolysis in nongrowing cells. Lipids 14:718–726 [CrossRef]
    [Google Scholar]
  4. Clark V. L., Campbell L. A., Palermo D. A., Evans T. M., Klimpel K. W. 1987; Induction and repression of outer membrane proteins by anaerobic growth of Neisseria gonorrhoeae. Infect Immun 55:1359–1364
    [Google Scholar]
  5. Cole M. J., Enke C. G. 1991; Direct determination of phospholipid structures in microorganisms by fast atom bombardment triple quadrupole mass spectrometry. Anal Chem 63:1032–1038 [CrossRef]
    [Google Scholar]
  6. Coleman J. 1992; Characterization of Escherichia coli cells deficient in 1-acyl-sn-glycerol-3-phosphate acyltransferase activity (plsC). Mol Gen Genet 232:295–303
    [Google Scholar]
  7. Dempsey J. F., Cannon J. G. 1994; Locations of genetic markers on the physical map of the chromosome of Neisseria gonorrhoeae FA 1090. J Bacteriol 176:2055–2060
    [Google Scholar]
  8. Drucker D. B., Megson G., Harty D. W. S., Riba I., Gaskell S. J. 1995; Phospholipids of Lactobacillus spp. J Bacteriol 177:6304–6308
    [Google Scholar]
  9. Guymon L. F., Walstad D. L., Sparling P. F. 1978; Cell envelope alterations in antibiotic-sensitive and -resistant strains of Neisseria gonorrhoeae. J Bacteriol 136:391–401
    [Google Scholar]
  10. Hancock R. E. 1997; The bacterial outer membrane as a drug barrier. Trends Microbiol 5:37–42 [CrossRef]
    [Google Scholar]
  11. Handsfield H. H., Sparling P. F. 1995; Neisseria gonorrhoeae. In Principles and Practice of Infectious Diseases pp. 103–119Edited by Mandell G. L., Douglas R. G., Bennett J. E., Dolin R. New York: Churchill Livingstone;
    [Google Scholar]
  12. Jensen N. J., Tomer K. B., Gross M. L. 1987; FAB MS/MS for phosphatidylinositol, -glycerol, -ethanolamine, and other complex phospholipids. Lipids 22:480–489 [CrossRef]
    [Google Scholar]
  13. Kahler C. M., Stephens D. S. 1998; Genetic basis for biosynthesis, structure, and function of meningococcal lipooligosaccharide (endotoxin). Crit Rev Microbiol 24:281–334
    [Google Scholar]
  14. Kahler C. M., Carlson R. W., Rahman M. M., Martin L. E., Stephens D. S. 1996a; Two glycosyltransferase genes, lgtF and rfaK, constitute the lipooligosaccharide ice (inner core extension) biosynthesis operon of Neisseria meningitidis. J Bacteriol 178:6677–6684
    [Google Scholar]
  15. Kahler C. M., Carlson R. W., Rahman M. M., Martin L. E., Stephens D. S. 1996b; Inner core biosynthesis of lipooligosaccharide (LOS) in Neisseria meningitidis serogroup B: Identification and role in LOS assembly of the α1,2 N-acetylglucosamine transferase (rfaK). J Bacteriol 178:1265–1273
    [Google Scholar]
  16. Karow M., Fayet O., Georgopoulos C. 1992; The lethal phenotype caused by null mutations in the Escherichia coli htrB gene is suppressed by mutations in the accBC operon, encoding two subunits of acetyl coenzyme A carboxylase. J Bacteriol 174:7407–7418
    [Google Scholar]
  17. Kloser A., Laird M., Ding M., Misra R. 1998; Modulations in lipid A and phospholipid biosynthesis pathways influence outer membrane protein assembly in Escherichia coli. Mol Microbiol 27:1003–1008 [CrossRef]
    [Google Scholar]
  18. Lee F. K. N., Stephens D. S., Gibson B. W., Engstrom J. J., Zhou D., Apicella M. A. 1995; Microheterogeneity of Neisseria lipooligosaccharide: analysis of a UDP-glucose 4-epimerase mutant of Neisseria meningitidis NMB. Infect Immun 63:2508–2515
    [Google Scholar]
  19. Lewis V. J., Weaver R. W., Hollis D. G. 1968; Fatty acid composition of Neisseria species as determined by gas chromatography. J Bacteriol 96:1–5
    [Google Scholar]
  20. Mold C. 1989; Effect of membrane phospholipids on activation of the alternative complement pathway. J Immunol 143:1663–1668
    [Google Scholar]
  21. Moolenaar W. H. 1995; Lysophosphatidic acid, a multifunctional phospholipid messenger. J Biol Chem 270:12949–12952 [CrossRef]
    [Google Scholar]
  22. Morse S. A., Bartenstein L. 1974; Factors affecting autolysis of Neisseria gonorrhoeae. Proc Soc Exp Biol Med 145:1418–1421 [CrossRef]
    [Google Scholar]
  23. Moss C. W., Kellogg D. S. Jr, Farshy D. C., Lambert M. A., Thayer J. D. 1970; Cellular fatty acids of pathogenic Neisseria. J Bacteriol 104:63–68
    [Google Scholar]
  24. Nassif X., So M. 1995; Interaction of pathogenic Neisseriae with nonphagocytic cells. Clin Microbiol Rev 8:376–388
    [Google Scholar]
  25. Nikaido H. 1996; Outer membrane. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp. 29–47Edited by Neidhardt F. C., Ingraham J. L., Brooks Low K., Magasanik B., Schaechter M., Umbarger H. E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Radin N. S. 1969; Preparation of lipid extracts. Methods Enzymol 14:245–254
    [Google Scholar]
  27. Raetz C. R. 1996; Bacterial lipopolysaccharides: a remarkable family of bioactive macroamphiphiles. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp. 1035–1063Edited by Neidhardt F. C., Ingraham J. L., Brooks Low K., Magasanik B., Schaechter M., Umbarger H. E. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  28. Rock C. O., Jackowski S., Cronan J. E. Jr 1996; Lipid metabolism in prokaryotes. In Biochemistry of Lipids, Lipoproteins and Membranes pp 35–74Edited by Vance D. E., Vance J. E. Amsterdam: Elsevier;
    [Google Scholar]
  29. Rottem S., Markowitz O., Razin S. 1978; Thermal regulation of the fatty acid composition of lipopolysaccharides and phospholipids of Proteus mirabilis. Eur J Biochem 85:445–450 [CrossRef]
    [Google Scholar]
  30. Sen K., Nikaido H. 1991; Lipopolysaccharide structure required for in vitro trimerization of Escherichia coli OmpF porin. J Bacteriol 173:926–928
    [Google Scholar]
  31. Senff L. M., Wegener W. S., Brooks G. F., Finnerty W. R., Makula R. A. 1976; Phospholipid composition and phospholipase A activity of Neisseria gonorrhoeae. J Bacteriol 127:874–880
    [Google Scholar]
  32. Shibuya I. 1992; Metabolic regulations and biological functions of phospholipids in Escherichia coli. Prog Lipid Res 31:245–299 [CrossRef]
    [Google Scholar]
  33. Shih G. C., Kahler C. M., Swartley J. S., Rahman M. M., Coleman J., Carlson R. W., Stephens D. S. 1998; Multiple lysophosphatidic acid acyltransferases in Neisseria meningitidis. Mol Microbiol 32:942–952
    [Google Scholar]
  34. Smith P. B., Synder A. P., Harden C. S. 1995; Characterization of bacterial phospholipids by electrospray ionization tandem mass spectrometry. Anal Chem 67:1824–1830 [CrossRef]
    [Google Scholar]
  35. Steeghs L., Den Hartog R., Den Boer A., Zomer B., Roholl P., Van der Ley P. 1998; Meningitis bacterium is viable without endotoxin. Nature 392:449–450 [CrossRef]
    [Google Scholar]
  36. Stephens D. S., Swartley J. S., Kathariou S., Morse S. A. 1991; Insertion of Tn916 in Neisseria meningitidis resulting in loss of Group B capsular polysaccharide. Infect Immun 59:4097–4102
    [Google Scholar]
  37. Stephens D. S., McAllister C. F., Zhou D., Lee F. K., Apicella M. A. 1994; Tn916-generated, lipooligosaccharide mutants of Neisseria meningitidis and Neisseria gonorrhoeae. Infect Immun 62:2947–2952
    [Google Scholar]
  38. Sud I. J., Feingold D. S. 1976; Phospholipids and fatty acids of Neisseria gonorrhoeae. J Bacteriol 124:713–717
    [Google Scholar]
  39. Swartley J. S., Stephens D. S. 1994; Identification of a genetic locus involved in the biosynthesis of N-acetyl-d-mannosamine, a precursor of the (α2→8)-linked polysialic acid capsule of serogroup B Neisseria meningitidis. J Bacteriol 176:1530–1534
    [Google Scholar]
  40. Swartley J. S., Liu L., Miller Y. K., Martin L. E., Edupunganti S., Stephens D. S. 1998; Characterization of the gne cassette required for biosynthesis of the (α1-6) linked N-acetyl-d-mannosamine-1-phosphate capsule of serogroup A Neisseria meningitidis. J Bacteriol 180:1533–1539
    [Google Scholar]
  41. Van der Ley P., Hamstra H. J., Steeghs L. 1998; Modification of lipid A biosynthesis in Neisseria meningitidis. In Abstracts of the 11th Pathogenic Neisseria Conference abstract no. 27 Paris, FranceEditions EDK
    [Google Scholar]
  42. Virji M. 1996; Meningococcal disease: epidemiology and pathogenesis. Trends Microbiol 4:466–470 [CrossRef]
    [Google Scholar]
  43. Wilkinson S. G. 1988; Gram-negative bacteria. In Microbial Lipids pp. 299–488Edited by Ratledge C., Wilkinson S. G. London: Academic Press;
    [Google Scholar]
  44. Wolf-Watz H., Elmros T., Normark S., Bloom G. D. 1975; Cell envelope of Neisseria gonorrhoeae: outer membrane and peptidoglycan composition of penicillin-sensitive and -resistant strains. Infect Immun 11:1332–1341
    [Google Scholar]
  45. York W. S., Darvill A. G., McNeil M., Stevenson T. T., Albersheim P. 1985; Isolation and characterization of plant cell walls and cell wall components. Methods Enzymol 118:3–40
    [Google Scholar]
  46. Yruela I., Barbe A., Grimalt J. O. 1990; Determination of double bond position and geometry in linear and highly branched hydrocarbons and fatty acids from gas chromatography-mass spectrometry of epoxides and diols generated by stereospecific resin hydration. J Chromatogr Sci 28:421–427 [CrossRef]
    [Google Scholar]
  47. Zhou D., Stephens D. S., Gibson B. W., Engstrom J. J., McAllister C. F., Lee F. K. N., Apicella M. A. 1994; Lipooligosaccharide biosynthesis in pathogenic Neisseria. Cloning, identification, and characterization of the phosphoglucomutase gene. J Biol Chem 269:11162–11169
    [Google Scholar]
  48. Zollinger W. D., Mandrell R. E. 1977; Outer-membrane protein and lipopolysaccharide serotyping on Neisseria meningitidis by inhibition of a solid-phase radioimmunoassay. Infect Immun 18:424–433
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-8-1901
Loading
/content/journal/micro/10.1099/00221287-146-8-1901
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error